geometric quantum mechanics
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 10 (9) ◽  
pp. 3253-3262
Author(s):  
H. Umair ◽  
H. Zainuddin ◽  
K.T. Chan ◽  
Sh.K. Said Husein

Geometric Quantum Mechanics is a version of quantum theory that has been formulated in terms of Hamiltonian phase-space dynamics. The states in this framework belong to points in complex projective Hilbert space, the observables are real valued functions on the space, and the Hamiltonian flow is described by the Schr{\"o}dinger equation. Besides, one has demonstrated that the stronger version of the uncertainty relation, namely the Robertson-Schr{\"o}dinger uncertainty relation, may be stated using symplectic form and Riemannian metric. In this research, the generalized Robertson-Schr{\"o}dinger uncertainty principle for spin $\frac{1}{2}$ system has been constructed by considering the operators corresponding to arbitrary direction.


2021 ◽  
Vol 10 (9) ◽  
pp. 3241-3251
Author(s):  
H. Umair ◽  
H. Zainuddin ◽  
K.T. Chan ◽  
Sh.K. Said Husein

Geometric Quantum Mechanics is a formulation that demonstrates how quantum theory may be casted in the language of Hamiltonian phase-space dynamics. In this framework, the states are referring to points in complex projective Hilbert space, the observables are real valued functions on the space and the Hamiltonian flow is defined by Schr{\"o}dinger equation. Recently, the effort to cast uncertainty principle in terms of geometrical language appeared to become the subject of intense study in geometric quantum mechanics. One has shown that the stronger version of uncertainty relation i.e. the Robertson-Schr{\"o}dinger uncertainty relation can be expressed in terms of the symplectic form and Riemannian metric. In this paper, we investigate the dynamical behavior of the uncertainty relation for spin $\frac{1}{2}$ system based on this formulation. We show that the Robertson-Schr{\"o}dinger uncertainty principle is not invariant under Hamiltonian flow. This is due to the fact that during evolution process, unlike symplectic area, the Riemannian metric is not invariant under the flow.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1107
Author(s):  
Akira Sone ◽  
Sebastian Deffner

The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy. The analysis is concluded with an application of the conceptual insight to conditional thermal states, and the correspondingly tightened maximum work theorem.


2019 ◽  
Vol 2 (2) ◽  

Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown.


Open Physics ◽  
2010 ◽  
Vol 8 (1) ◽  
Author(s):  
Mauro Spera

AbstractIn this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.


2007 ◽  
Vol 22 (20) ◽  
pp. 3317-3405 ◽  
Author(s):  
VISHNU JEJJALA ◽  
MICHAEL KAVIC ◽  
DJORDJE MINIC

We review our recent proposal for a background-independent formulation of a holographic theory of quantum gravity. The present paper incorporates the necessary background material on geometry of canonical quantum theory, holography and space–time thermodynamics, Matrix theory, as well as our specific proposal for a dynamical theory of geometric quantum mechanics, as applied to Matrix theory. At the heart of this review is a new analysis of the conceptual problem of time and the closely related and phenomenologically relevant problem of vacuum energy in quantum gravity. We also present a discussion of some observational implications of this new viewpoint on the problem of vacuum energy.


Sign in / Sign up

Export Citation Format

Share Document