wood adhesive
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 96)

H-INDEX

30
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 259
Author(s):  
Raphaela Hellmayr ◽  
Sabrina Bischof ◽  
Jasmin Wühl ◽  
Georg M. Guebitz ◽  
Gibson S. Nyanhongo ◽  
...  

This study investigates the effect of the enzymatic polymerization of lignosulfonate for the formulation of a lignosulfonate-based adhesive. For this, beech lamellas were glued together and tested according to the EN 302-1 standard. The results showed that the laccase-polymerized lignosulfonate-based wood adhesives (LS-p) had similar mechanical properties as a standard carpenter’s glue (PVAc-based D3 class white glue), as no significant difference in tensile shear strength between these two adhesive types was found. However, carpenter’s glue showed almost 100% wood failure, while with the lignosulfonate-based wood glue, the samples failed, mainly in the glueline. Pre-polymerization of LS-p is the most critical factor to achieve the required viscosity, which is also connected to the wetting properties and the resulting tensile shear strength. The longer the pre-polymerization, the higher the viscosity of the LS-p adhesive, with the tensile shear strength reaching a plateau. The presented data show the potential of using enzymatically pre-polymerized lignosulfonate as a well-performing wood adhesive. Further development and optimization of the pre-polymerization process is required, which is also important to push towards upscaling and practical applications.


2022 ◽  
Author(s):  
Hüseyin Emre Ilgın ◽  
Markku Karjalainen ◽  
Olli-Paavo Koponen

Adhesives and metal fasteners have an important place in the content of engineered wood products (EWPs). However, adhesives may cause toxic gas emissions due to their petroleum-based nature, while metal fasteners may adversely affect the reusability of these products. These issues also raise important questions about the sustainability and environmental friendliness of EWPs. Thus, there is still room for a solution that is solid and completely pure wood, adhesive- and metal-connectors-free dovetail wood board elements (DWBEs). There are many studies on the technological, ecological, and economic aspects of these products in the literature, but no studies have been conducted to assess the technical performance of DWBEs. This chapter focuses on DWBEs by proposing various geometric configurations for horizontal structural members in multistory building construction through architectural modeling programs. In this architectural design phase, which is one of the first but most important stages, the proposed configurations are based on a theoretical approach, considering contemporary construction practices rather than structural analysis or mechanical simulation. Further research, including technical performance tests, will be undertaken after this critical phase. It is believed that this chapter will contribute to the dissemination of DWBEs for innovative architectural and structural applications, especially in multistory wooden structures construction.


2022 ◽  
Vol 10 (2) ◽  
pp. 263-271
Author(s):  
Saad Nader ◽  
Felipe Guzman ◽  
Raphael Becar ◽  
C閟ar Segovia ◽  
Cecilia Fuentealba ◽  
...  

Author(s):  
Norizaty Irman ◽  
Nur Hanis Abd Latif ◽  
Nicolas Brosse ◽  
Francois Gambier ◽  
Firda Aulya Syamani ◽  
...  
Keyword(s):  

2021 ◽  
Vol 37 (6) ◽  
pp. 801-806
Author(s):  
Seung Jun Oh ◽  
Won Sik Han ◽  
Koang Chul Wi

In order to improve the usability of glue, a traditional adhesive material, and the gelation process of seaweed extract carrageenan, a liquid adhesive for wood preservation was prepared by mixing the two materials. The prepared wood adhesive was mixed with a 15 wt% aqueous solution of glue, λ-carrageenan, an antibacterial agent, an antifoaming agent, and the maximum adhesive strength of 1.80 Mpa was confirmed. As a result of comparison, the adhesive strength was superior to that of 5 different types of traditional natural adhesive ingredients (aqueous solution) and 1 type of polyvinyl acetate-based adhesive.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4224
Author(s):  
Daisuke Ando ◽  
Kenji Umemura

In sucrose/citric acid based wood adhesive, the detailed bonding mechanism has still been unknown. Here, we investigated the detailed chemical structures of this adhesive wood (Japanese cedar)-based molding by using heteronuclear single quantum coherence–nuclear magnetic resonance (HSQC-NMR). NMR peaks associated with the furan-type structure appeared, suggesting that the furan compound was formed from sucrose and converted to a furan polymer during the adhesive process and that some of the furan structures in the polymers were ester-bonded with citric acid. The secondary forces between the furan polymers and wood components were thought to contribute to the adhesive effect. In our analysis of the interphase structure, primary hydroxyl groups of both polysaccharides and of lignin substructures were found to be esterified with citric acid. Additionally, some of the glycosidic bonds in polysaccharides were cleaved during the acidic condition produced by citric acid. The above results provided evidence of the polymerization of sucrose-derived 5-HMF, the esterification of wood components, and the degradation of polysaccharides during the molding process. Citric acid functioned as a clamp between the obtained furan polymer and the wood components. The sucrose/citric acid based wood adhesive can be defined as a hybrid-type wood adhesive, involving both secondary forces and chemical bonding interactions.


Author(s):  
Sichen Liu ◽  
Guanben Du ◽  
Hongxing Yang ◽  
Hang Su ◽  
Xin Ran ◽  
...  

2021 ◽  
Vol 173 ◽  
pp. 114125
Author(s):  
Boye Liu ◽  
Zhenyuan Li ◽  
Jingsi Zhang ◽  
Mei Du ◽  
Fang Fang ◽  
...  

2021 ◽  
pp. 110973
Author(s):  
Ying Zhou ◽  
Guodong Zeng ◽  
Fudong Zhang ◽  
Jing Luo ◽  
Kuang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document