surface irradiance
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Richard Müller ◽  
Uwe Pfeifroth

Abstract. Accurate solar surface irradiance data (SSI) is a prerequisite for efficient planning and operation of solar energy sys- tems. Respective data are also essential for climate monitoring and analysis. Satellite-based SSI has grown in importance over the last few decades. However, a retrieval method is needed to relate the measured radiances at the satellite to the solar surface irradiance. In a widespread classical approach, these radiances are used directly to derive the effective cloud albedo (CAL) as basis for the estimation of the solar surface irradiance. This approach has been already introduced and discussed in the early 1980s. Various approaches are briefly discussed and analyzed, including an overview of open questions and opportunities for improvement. Special emphasis is placed on the reflection of fundamental physical laws and atmospheric measurement tech- niques. In addition, atmospheric input data and key applications are briefly discussed. It is concluded that the well established observational-based CAL approach is still an excellent choice for the retrieval of the cloud transmission. The coupling with Look-Up-Table based clear sky models enables the estimation of solar surface irradiance with high accuracy and homogeneity. This could explain why, despite its age, the direct CAL approach is still used by key players in energy meteorology and the climate community. For the clear sky input data it is recommended to use ECMWF forecast and reanalysis data.


Author(s):  
Ralph Zipper ◽  
Brian Pryor

AbstractPhotobiomodulation therapy (PBMT) is an effective means of treating muscle spasm and pain. A novel near-infrared laser system has been commercialized for the treatment of myofascial pelvic pain in women (SoLá Therapy, UroShape, LLC). This study was undertaken to determine if this device is capable of delivering therapeutic levels of irradiance to the pelvic muscles and to identify the surface irradiance required to achieve this goal. This novel class IV near-infrared laser and transvaginal applicator were used to deliver near-infrared light energy through the vaginal mucosa of an adult Suffolk/Dorset Ewe. Irradiance was measured on the surface of the levator ani muscle, inside the levator ani muscle, and inside the bladder. Measurements were taken at powers of 5 W and 0.5 W. 3.0% of vaginal surface irradiance was measured inside of the levator ani muscle. 4.4% of vaginal surface irradiance was measured inside the bladder. At 5 W, the novel laser system provided a surface irradiance of 738 mW/cm2. At 0.5 W, the system provided a surface irradiance of 74 mW/cm2. A novel class IV near-infrared laser and transvaginal applicator delivered therapeutic irradiance to the levator ani muscle and bladder of an anesthetized ewe at a power setting of 5 W. A power setting of 0.5 W failed to deliver therapeutic energy into either the levator ani muscle or bladder. Clinical applications targeting deeper tissues such as the pelvic muscles and or bladder should consider power settings that exceed 0.5 W and or irradiance of ≥ 75 mW/cm2.


Author(s):  
Chiel C. van Heerwaarden ◽  
Wouter B. Mol ◽  
Menno A. Veerman ◽  
Imme Benedict ◽  
Bert G. Heusinkveld ◽  
...  

AbstractSpring 2020 broke sunshine duration records across Western Europe. The Netherlands recorded the highest surface irradiance since 1928, exceeding the previous extreme of 2011 by 13%, and the diffuse fraction of the irradiance measured a record low percentage (38%). The coinciding irradiance extreme and a reduction in anthropogenic pollution due to COVID-19 measures triggered the hypothesis that cleaner-than-usual air contributed to the record. Based on analyses of ground-based and satellite observations and experiments with a radiative transfer model, we estimate a 1.3% (2.3 W m−2) increase in surface irradiance with respect to the 2010–2019 mean due to a low median aerosol optical depth, and a 17.6% (30.7 W m−2) increase due to several exceptionally dry days and a very low cloud fraction overall. Our analyses show that the reduced aerosols and contrails due to the COVID-19 measures are far less important in the irradiance record than the dry and particularly cloud-free weather.


Author(s):  
Guiting Song ◽  
Robert Huva ◽  
Yu Xing ◽  
Xiaohui Zhong

AbstractFor most locations on Earth the ability of a Numerical Weather Prediction (NWP) model to accurately simulate surface irradiance relies heavily on the NWP model being able to resolve cloud coverage and thickness. At horizontal resolutions at or below a few kilometres NWP models begin to explicitly resolve convection and the clouds that arise from convective processes. However, even at high resolutions, biases may remain in the model and result in under- or over-prediction of surface irradiance. In this study we explore the correction of such systematic biases using a moisture adjustment method in tandem with the Weather Research and Forecasting model (WRF) for a location in Xinjiang, China. After extensive optimisation of the configuration of the WRF model we show that systematic biases still exist—in particular for wintertime in Xinjiang. We then demonstrate the moisture adjustment method with cloudy days for January 2019. Adjusting the relative humidity by 12% through the vertical led to a Root Mean Square Error (RMSE) improvement of 57.8% and a 90.5% reduction in bias for surface irradiance.


2020 ◽  
Vol 12 (12) ◽  
pp. 1950
Author(s):  
Seiji Kato ◽  
David A. Rutan ◽  
Fred G. Rose ◽  
Thomas E. Caldwell ◽  
Seung-Hee Ham ◽  
...  

The Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Edition 4.1 data product provides global surface irradiances. Uncertainties in the global and regional monthly and annual mean all-sky net shortwave, longwave, and shortwave plus longwave (total) irradiances are estimated using ground-based observations. Error covariance is derived from surface irradiance sensitivity to surface, atmospheric, cloud and aerosol property perturbations. Uncertainties in global annual mean net shortwave, longwave, and total irradiances at the surface are, respectively, 5.7 Wm−2, 6.7 Wm−2, and 9.7 Wm−2. In addition, the uncertainty in surface downward irradiance monthly anomalies and their trends are estimated based on the difference derived from EBAF surface irradiances and observations. The uncertainty in the decadal trend suggests that when differences of decadal global mean downward shortwave and longwave irradiances are, respectively, greater than 0.45 Wm−2 and 0.52 Wm−2, the difference is larger than 1σ uncertainties. However, surface irradiance observation sites are located predominately over tropical oceans and the northern hemisphere mid-latitude. As a consequence, the effect of a discontinuity introduced by using multiple geostationary satellites in deriving cloud properties is likely to be excluded from these trend and decadal change uncertainty estimates. Nevertheless, the monthly anomaly timeseries of radiative cooling in the atmosphere (multiplied by −1) agrees reasonably well with the anomaly time series of diabatic heating derived from global mean precipitation and sensible heat flux with a correlation coefficient of 0.46.


Author(s):  
Aurora Baluja ◽  
Justo Arines ◽  
Ramón Vilanova ◽  
Carmen Bao ◽  
Maite Flores

ABSTRACTBackground and ObjectivesThe SARS-CoV2 pandemic has lead to a global decrease in protection ware, especially facepiece filtering respirators (FFRs). Ultraviolet-C wavelength is a promising way of descontamination, however adequate dosimetry is needed to ensure balance between over and underexposed areas and provide reliable results. Our study demonstrates that UVGI light dosage varies significantly on different respirator angles, and propose a method to descontaminate several masks at once ensuring appropriate dosage in shaded zones.MethodsAn UVGI irradiator was built with internal dimensions of 69.5 x55 × 33 cm with three 15W UV lamps. Inside, a grating of 58 × 41 × 15 cm was placed to hold the masks. Two different respirator models were used to assess irradiance, four of model Aura 9322 3M of dimensions 17 × 9 × 4cm, and two of model SAFE 231FFP3NR with dimensions 17 × 6 × 5 cm. A spectrometer STN-SilverNova was employed to verify wavelength spectrum and surface irradiance. A simulation was performed to find the irradiance pattern inside the box and the six masks placed inside. These simulations were carried out using the software DIALUX EVO 8.2.ResultsThe data obtained reveal that the dosage received inside the manufactured UVGI-irradiator depends not only on the distance between the luminaires plane and the base of the respirators but also on the orientation and shape of the masks. This point becomes relevant in order to assure that all the respirators inside the chamber receive the correct dosage.ConclusionIrradiance over FFR surfaces depend on several factors such as distance, angle of incidence of the light source. Careful dosage measurement and simulation can ensure reliable dosage in the whole mask surface, balancing overexposure. Closed box systems might provide a more reliable, reproducible UVGI dosage than open settings.


2020 ◽  
Vol 37 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Libeesh Lukose ◽  
Dibyendu Dutta

AbstractSurface solar irradiance is considered as an important component of the surface radiation budget and constitutes one of the essential climate variables. In the present study, clear-sky instantaneous solar irradiance was estimated over 15 physiographic regions of India during January. Dewpoint temperature profiles were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite to calculate actual vapor pressure following Clausius–Clapeyron equation, which was further used in the Zillman parameterization for solar irradiance. The effect of terrain slope and aspect on direct radiation was taken into account by modifying the parameterized incoming shortwave flux by introducing the local incidence angle. A significant positive correlation was found between terrain-corrected MODIS irradiance and measured radiation data but the RMSE was very high (187 W m−2). Further, the effect of aerosol extinction was introduced by multiplying the terrain-corrected flux by a transmission factor obtained from satellite-derived aerosol optical depth and Ångström exponent. Due to the inclusion of the aerosol transmittance, the correlation was significantly improved (R2 = 0.84) and RMSE was reduced (31 W m−2). Further the effect of surface orientation on surface irradiance was evaluated on six hilly subdivisions. A large variation in the flux (135 to 161 W m−2) was noticed among different aspect classes. The variability was highest in the Eastern Himalayas subdivision (>250 W m−2) and was a minimum in the Eastern Hills subdivision (<28 W m−2). In absence of ground radiation data in hills, Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), was used for validation of model output but it performed poorly and got saturated at higher surface irradiance values.


Author(s):  
Zhao Zhen ◽  
Jiaming Liu ◽  
Zhanyao Zhang ◽  
Fei Wang ◽  
Hua Chai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document