When the electromagnetic transients occur in a power transformer, an inrush current is generated in its winding. The inrush current not only affects the performance of the transformer windings, but also affects the lifetime of the transformer. Many factors affect the inrush current, the most influential ones among which are the closing phase angle and the residual flux. In this paper, a dry-type transformer simulation model is built to analyze the influence of the inrush current on the performance of transformer windings during no-load reclosing conditions. Firstly, the inrush current was generated in the transformer windings during the no-load reclosing operation under different residual fluxes. Secondly, the field-circuit coupling 3d finite element method is used to analyze the electromagnetic force at different locations of the transformer windings under the influence of different inrush currents. The results of winding structural parameter variations are obtained through electromagnetic-structural coupling simulation, and the electromagnetic forces are used as the input parameter for the structural analysis. Finally, the residual flux is generated by controlling the opening and closing angle of the transformer through the phase-controlled switch, and the winding electromechanical characteristics are tested under different residual fluxes. Finally, comparisons of the test and simulation results are drawn to verify the impact of the closing angle and residual flux on inrush current and the winding deformation during the no-load reclosing conditions.