glia cells
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 50)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Dongze Li ◽  
Na Xu ◽  
Yanyan Hou ◽  
Wenjing Ren ◽  
Na Zhang ◽  
...  

AbstractThe mechanisms of chronic intermittent hypoxia (CIH)-induced cognitive deficits remain unclear. Here, our study found that about 3 months CIH treatment induced lipid droplets (LDs) accumulation in hippocampal nerve and glia cells of C57BL/6 mice, and caused severe neuro damage including neuron lesions, neuroblast (NB) apoptosis and abnormal glial activation. Studies have shown that the neuronal metabolism disorders might contribute to the CIH induced-hippocampal impairment. Mechanistically, the results showed that pyruvate dehydrogenase complex E1ɑ subunit (PDHA1) and the pyruvate dehydrogenase complex (PDC) activator pyruvate dehydrogenase phosphatase 1 (PDP1) did not noticeable change after intermittent hypoxia. Consistent with those results, the level of Acetyl-CoA in hippocampus did not significantly change after CIH exposure. Interestingly, we found that CIH produced large quantities of ROS, which activated the JNK/SREBP/ACC pathway in nerve and glia cells. ACC catalyzed the carboxylation of Acetyl-CoA to malonyl-CoA and then more lipid acids were synthesized, which finally caused aberrant LDs accumulation. Therefore, the JNK/SREBP/ACC pathway played a crucial role in the cognitive deficits caused by LDs accumulation after CIH exposure. Additionally, LDs were peroxidized by the high level of ROS under CIH conditions. Together, lipid metabolic disorders contributed to nerve and glia cells damage, which ultimately caused behavioral dysfunction. An active component of Salvia miltiorrhiza, SMND-309, dramatically alleviated these injuries and improved cognitive deficits of CIH mice.


2021 ◽  
Vol 11 (1) ◽  
pp. 186
Author(s):  
Linda Frintrop ◽  
Stefanie Trinh ◽  
Jochen Seitz ◽  
Markus Kipp

Eating behavior is controlled by hypothalamic circuits in which agouti-related peptide-expressing neurons when activated in the arcuate nucleus, promote food intake while pro-opiomelanocortin-producing neurons promote satiety. The respective neurotransmitters signal to other parts of the hypothalamus such as the paraventricular nucleus as well as several extra-hypothalamic brain regions to orchestrate eating behavior. This complex process of food intake may be influenced by glia cells, in particular astrocytes and microglia. Recent studies showed that GFAP+ astrocyte cell density is reduced in the central nervous system of an experimental anorexia nervosa model. Anorexia nervosa is an eating disorder that causes, among the well-known somatic symptoms, brain volume loss which was associated with neuropsychological deficits while the underlying pathophysiology is unknown. In this review article, we summarize the findings of glia cells in anorexia nervosa animal models and try to deduce which role glia cells might play in the pathophysiology of eating disorders, including anorexia nervosa. A better understanding of glia cell function in the regulation of food intake and eating behavior might lead to the identification of new drug targets.


Zoomorphology ◽  
2021 ◽  
Author(s):  
Patrick Beckers ◽  
Carla Pein ◽  
Thomas Bartolomaeus

AbstractMushroom bodies are known from annelids and arthropods and were formerly assumed to argue for a close relationship of these two taxa. Since molecular phylogenies univocally show that both taxa belong to two different clades in the bilaterian tree, similarity must either result from convergent evolution or from transformation of an ancestral mushroom body. Any morphological differences in the ultrastructure and composition of mushroom bodies could thus indicate convergent evolution that results from similar functional constraints. We here study the ultrastructure of the mushroom bodies, the glomerular neuropil, glia-cells and the general anatomy of the nervous system in Sthenelais boa. The neuropil of the mushroom bodies is composed of densely packed, small diameter neurites that lack individual or clusterwise glia enwrapping. Neurites of other regions of the brain are much more prominent, are enwrapped by glia-cell processes and thus can be discriminated from the neuropil of the mushroom bodies. The same applies to the respective neuronal somata. The glomerular neuropil of insects and annelids is a region of higher synaptic activity that result in a spheroid appearance of these structures. However, while these structures are sharply delimited from the surrounding neuropil of the brain by glia enwrapping in insects, this is not the case in Sthenelais boa. Although superficially similar, there are anatomical differences in the arrangement of glia-cells in the mushroom bodies and the glomerular neuropil between insects and annelids. Hence, we suppose that the observed differences rather evolved convergently to solve similar functional constrains than by transforming an ancestral mushroom body design.


Gene ◽  
2021 ◽  
pp. 146135
Author(s):  
Aysenur Akkulak ◽  
Gizem Donmez Yalcin
Keyword(s):  

Author(s):  
Samir K. Beura ◽  
Abhishek R. Panigrahi ◽  
Pooja Yadav ◽  
Siwani Agrawal ◽  
Sunil K. Singh
Keyword(s):  

Author(s):  
Elisabeth C. Kugler ◽  
John Greenwood ◽  
Ryan B. MacDonald

The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the “neuro” and “vascular” components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.


2021 ◽  
Author(s):  
Ada G Rodríguez-Campuzano ◽  
Luisa C. Hernández-Kelly ◽  
Arturo Ortega

Abstract Exposure to xenobiotics has a significant impact in brain physiology, that could be liked to an excitotoxic processes induced by a massive release of the main excitatory neurotransmitter, L-glutamate. Overstimulation of post-synaptic and extra-synaptic glutamate receptors leads to a disturbance of intracellular calcium homeostasis that is critically involved in neuronal death. Hence, glutamate extracellular levels are tightly regulated through its uptake by glial glutamate transporters. It has been observed that glutamate regulates its own removal, both in the short-time frame via a transporter-mediated decrease in the uptake, and in the long-term through the transcriptional control of its gene expression, a process mediated by glutamate receptors that involves the Ca2+/diacylglycerol-dependent protein kinase and the transcription factor Ying Yang 1. Taking into consideration that this transcription factor is as a member of the Polycomb complex and thus, part of repressive and activating chromatin remodeling factors, it might direct the interaction of DNA methyltransferases or dioxygenases of methylated cytosines to their target sequences. Since glial glutamate transporters promoters are targets of Ying-Yang 1, in this contribution, we explored the role of dynamic DNA methylation in the expression and function of glial glutamate transporters. To this end, we used the well-characterized models of primary cultures of chick cerebellar Bergmann glia cells and a human retina-derived Müller glia cell line. A time and dose-dependent increase in global DNA methylation was found upon glutamate exposure. Under hypomethylation conditions, both glial glutamate transporters expression and function were increased. These results, favor the notion that a dynamic methylation program triggered by glutamate in glia cells modulates one of its major functions: glutamate removal.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4267
Author(s):  
Josefine de Stricker Borch ◽  
Jeppe Haslund-Vinding ◽  
Frederik Vilhardt ◽  
Andrea Daniela Maier ◽  
Tiit Mathiesen

Background: In recent years, it has become evident that the tumoral microenvironment (TME) plays a key role in the pathogenesis of various cancers. In meningiomas, however, the TME is poorly understood, and it is unknown if glia cells contribute to meningioma growth and behaviour. Objective: This scoping review investigates if the literature describes and substantiates tumour–brain crosstalk in meningiomas and summarises the current evidence regarding the role of the brain parenchyma in the pathogenesis of meningiomas. Methods: We identified studies through the electronic database PubMed. Articles describing glia cells and cytokines/chemokines in meningiomas were selected and reviewed. Results: Monocytes were detected as the most abundant infiltrating immune cells in meningiomas. Only brain-invasive meningiomas elicited a monocytic response at the tumour–brain interface. The expression of cytokines/chemokines in meningiomas has been studied to some extent, and some of them form autocrine loops in the tumour cells. Paracrine interactions between tumour cells and glia cells have not been explored. Conclusion: It is unknown to what extent meningiomas elicit an immune response in the brain parenchyma. We speculate that tumour–brain crosstalk might only be relevant in cases of invasive meningiomas that disrupt the pial–glial basement membrane.


2021 ◽  
Author(s):  
Karla A. Schwenke ◽  
Joo-Hee Waelzlein ◽  
Agnieszka Bauer ◽  
Achim Thomzig ◽  
Michael Beekes

Since the beginning prion research has been largely dependent on animal models for deciphering the disease, drug development or prion detection and quantification. Thereby, ethical as well as cost and labour-saving aspects call for alternatives in vitro. Cell models can replace or at least complement animal studies, but their number is still limited and the application usually restricted to certain strains and host species due to often strong transmission barriers. Bank voles promise to be an exception as they or materials prepared from them are uniquely susceptible to prions from various species in vivo, in vitro and in cell-free applications. Here we present a mainly astrocyte-based primary glia cell assay from bank vole, which is infectible with scrapie strains from bank vole, mouse and hamster. Stable propagation of bank vole-adapted RML, murine 22L and RML, and hamster 263K scrapie is detectable from 20 or 30 days post exposure onwards. Thereby, the infected bank vole glia cells show similar or even faster prion propagation than likewise infected glia cells of the corresponding murine or hamster hosts. We propose that our bank vole glia cell assay could be a versatile tool for studying and comparing multiple prion strains with different species backgrounds in a single cell assay.


Sign in / Sign up

Export Citation Format

Share Document