sugar release
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 45)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 176 ◽  
pp. 114317
Author(s):  
Xiaowu Gong ◽  
Qin Li ◽  
Tiantian Li ◽  
Cuihua Li ◽  
Jin Huang ◽  
...  

2022 ◽  
Vol 343 ◽  
pp. 126085
Author(s):  
Jiajun Lu ◽  
Mingyang Cheng ◽  
Chao Zhao ◽  
Qianjun Shao ◽  
Muhammad Hassan

2021 ◽  
Author(s):  
Asma Fiayaz

The present study investigated the utilization of algal biomass to produce bio-oil and acetone, butanol, and ethanol (ABE) products. Novel Clostridia fusants (C. beijernickii + C. thermocellum-CbCt and C. acetobutylicum + C. thermocellocum-CaCt) were developed using protoplast fusion technique and subsequently subjected to UV radiation for strain enhancement. Resultant mutated fusants showed improvement in thermal stability and higher resistance to biobutanol toxicity. Algal biomass was initially subjected to various hydrolysis treatments prior to fermentation. Combination treatment of thermal, chemical, and enzymatic resulted in maximum sugar release of 27.78 g/L. Maximum biobutanol concentration from fermentation using CbCt resulted in 7.98 g/L. Fermentation using CaCt produced a concentration of 7.39 g/L. Oil extraction from virgin algae investigated a green, bio-based approach using terpenes with ultrasonication and a modified, Bligh and Dyer method, separately. Combination method, ultrasonication followed by the modified Bligh and Dyer, resulted in oil yield of 46.27% (dlimonene) and 39.85% (p-cymene). Oil extraction was also produced from an algae sample following fermentation. Combined extraction method using fermentation sample resulted in oil yield of 65.04%.


2021 ◽  
Author(s):  
Asma Fiayaz

The present study investigated the utilization of algal biomass to produce bio-oil and acetone, butanol, and ethanol (ABE) products. Novel Clostridia fusants (C. beijernickii + C. thermocellum-CbCt and C. acetobutylicum + C. thermocellocum-CaCt) were developed using protoplast fusion technique and subsequently subjected to UV radiation for strain enhancement. Resultant mutated fusants showed improvement in thermal stability and higher resistance to biobutanol toxicity. Algal biomass was initially subjected to various hydrolysis treatments prior to fermentation. Combination treatment of thermal, chemical, and enzymatic resulted in maximum sugar release of 27.78 g/L. Maximum biobutanol concentration from fermentation using CbCt resulted in 7.98 g/L. Fermentation using CaCt produced a concentration of 7.39 g/L. Oil extraction from virgin algae investigated a green, bio-based approach using terpenes with ultrasonication and a modified, Bligh and Dyer method, separately. Combination method, ultrasonication followed by the modified Bligh and Dyer, resulted in oil yield of 46.27% (dlimonene) and 39.85% (p-cymene). Oil extraction was also produced from an algae sample following fermentation. Combined extraction method using fermentation sample resulted in oil yield of 65.04%.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259865
Author(s):  
Yang Liu ◽  
Shengli Liu ◽  
Guitao Jiang ◽  
Qiuzhong Dai

The present study aimed to explore the optimal zymogram of combination of 6 carbohydrases (glucoamylase, pullulanase, maltase, thermostable α-amylase, medium temperature α-amylase, and cold-active α-amylase) supplemented in corn-soybean based diet of broilers aged 1 to 3 wk for the maximum starch digestibility, by using in vitro simulated gastrointestinal digestion and response surface method. The third generation of simulated monogastric animal digestion system was used for in vitro digestion experiment. By using single factor completely random design, the optimal supplement levels of single carbohydras were determined by the reducing sugar release amount and improved dry matter digestibility, which were the parameters representing the starch digestibility of the diet. Additionally, Box-Behnken response surface method was used to predict the optimal combination of 6 carbohydrases. The results showed that the optimistic zymogram of 6 carbohydrases in corn-soybean based diet for broilers aged 1 to 3 wk were 297.39 U/g glucoamylase, 549.72 U/g pullulanase, 3.01 U/g maltase, 1,455.73 U/g thermostable α-amylase, 278.64 U/g medium temperature α-amylase, and 1,985.97 U/g cold-active α-amylase, and the associated reduced sugar release amount and improved dry matter digestibility were 215.98 mg/g, and 6.23%, respectively. Furthermore, we conducted in vitro digestion experiments with diets supplemented with the predicted optimistic zymogram and found that the experimental reduced sugar release amount and improved dry matter digestibility were 219.26 mg/g and 6.31% respectively, whose errors to the predicted optimistic reducing sugar release amount and the improved dry matter digestibility were 1.05% and 1.02%. To sum up, the predicted optimal zymogram of 6 carbohydrases in the present study were capable to improve the starch digestibility in diet for broilers aged 1 to 3 wk, which were represented by increased reduced sugar release amount and improved dry matter digestibility.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6770
Author(s):  
Samkelo Malgas ◽  
Mpho S. Mafa ◽  
Brian N. Mathibe ◽  
Brett I. Pletschke

Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification.


2021 ◽  
Vol 11 (21) ◽  
pp. 9949
Author(s):  
William Turner ◽  
Darren Greetham ◽  
Michal Mos ◽  
Michael Squance ◽  
Jason Kam ◽  
...  

Miscanthus is a fast-growing perennial grass that attracts significant attention for its potential application as a feedstock for bioethanol production. This report explores the difference in the lignocellulosic composition of various Miscanthus cultivars, including Miscanthus × giganteus cultivated at the same location (mainly Lincoln, UK). It also assesses the sugar release profiles and mineral composition profiles of five Miscanthus cultivars harvested over a growing period from November 2018 to February 2019. The results showed that Miscanthus × giganteus contains approximately 45.5% cellulose, 29.2% hemicellulose and 23.8% lignin (dry weight, w/w). Other cultivars of Miscanthus also contain high quantities of carbohydrates (cellulose 41.1–46.0%, hemicellulose 24.3–32.6% and lignin 21.4–24.9%). Pre-treatment of Miscanthus using dilute acid followed by enzymatic hydrolysis released 63.7–80.2% of the theoretical glucose content. Fermentation of a hydrolysate of Miscanthus × giganteus using Saccharomyces cerevisiae NCYC2592 produced 13.58 ± 1.11 g/L of ethanol from 35.13 ± 0.46 g/L of glucose, corresponding to a yield of 0.148 g/g dry weight Miscanthus biomass. Scanning electron microscopy was used to study the morphology of raw and hydrolysed Miscanthus samples, which provided visual proof of Miscanthus lignocellulose degradation in these processes. The sugar release profile showed that a consequence of Miscanthus plant growth is an increase in difficulty in releasing monosaccharides from the biomass. The potassium, magnesium, sodium, sulphur and phosphorus contents in various Miscanthus cultivars were analysed. The results revealed that these elements were slowly lost from the plants during the latter part of the growing season, for a specific cultivar, until February 2019.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2322
Author(s):  
Ding-Tao Wu ◽  
Yuan He ◽  
Meng-Xi Fu ◽  
Ren-You Gan ◽  
Yi-Chen Hu ◽  
...  

The present study aimed to explore the impacts of in vitro simulated saliva-gastrointestinal digestion on physicochemical and biological properties of the polyphenolic-protein-polysaccharide ternary complex (PPP) extracted from Hovenia dulcis. The results revealed that the in vitro digestion did remarkably affect physicochemical properties of PPP, such as content of reducing sugar release, content of bound polyphenolics, and molecular weight distribution, as well as ratios of compositional monosaccharides and amino acids. In particular, the content of bound polyphenolics notably decreased from 281.93 ± 2.36 to 54.89 ± 0.42 mg GAE/g, which might be the major reason for the reduction of bioactivities of PPP after in vitro digestion. Molecular weight of PPP also remarkably reduced, which might be attributed to the destruction of glycosidic linkages and the disruption of aggregates. Moreover, although biological activities of PPP obviously decreased after in vitro digestion, the digested PPP (PPP-I) also exhibited remarkable in vitro antioxidant and antiglycation activities, as well as in vitro inhibitory effects against α-glucosidase. These findings can help to well understand the digestive behavior of PPP extracted from H. dulcis, and provide valuable and scientific supports for the development of PPP in the industrial fields of functional food and medicine.


Sign in / Sign up

Export Citation Format

Share Document