reducing sugar
Recently Published Documents


TOTAL DOCUMENTS

998
(FIVE YEARS 314)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Simarpreet Kaur Chawla ◽  
Dinesh Goyal

Abstract Thermotolerant lactic acid producing bacteria, isolated from red soil of brick kiln was identified by 16S rRNA sequencing as Bacillus sonorenesis , which showed remarkable capability to ferment sugars of lignocellulosic biomass after pre-treatment, yielding 0.97 g/g lactic acid with overall productivity of 0.38 g L -1/ h. RSM was employed to optimize the sulphuric acid pre-treatment combined with dilute NaOH and hot water pre-treatment. Pretreated wheat straw biomass had 40.4% cellulose, 18.4% hemicellulose, 12.4% lignin and 28.2 g L -1 reducing sugar, while native wheat straw biomass had 36% cellulose, 25% hemicellulose, 20% total lignin, and 0.94 g L -1 reducing sugar. Scanning electron microscopy (SEM) revealed that the ordered and compact structure of wheat straw was destroyed upon pre-treatment. X-ray diffractogram (XRD) revealed 9.71% increase in crystallinity index ( CrI ) in pretreated biomass. FTIR spectrogram showed removal of lignin due to reduction of peak at 1640 cm -1 in pretreated biomass. Bacillus sonorenesis DGS15 is inhibitor tolerant (furfural (1.2 g L -1 ) and HMF (2.4 g L -1 )). Furfural was consumed after 72 h of fermentation and HMF got accumulated with 3.75-fold increase in concentration in the fermentation broth. In terms of final concentration, yield, and fermentation duration, this is the best performance of DGS15 for lactic acid production utilizing xylose, glucose as the carbon source. All of these findings showed that the thermotolerant Bacillus sonorenesis strain DGS15 is a novel, attractive candidate for producing lactic acid from lignocellulosic biomass.


2022 ◽  
Vol 52 (1) ◽  
Author(s):  
Gabriely Pinto Pereira ◽  
Felipe Francisco ◽  
Aline José Maia ◽  
Renato Vasconcelos Botelho ◽  
Luiz Antonio Biasi ◽  
...  

ABSTRACT: This study identified physiological and biochemical changes in ‘Fuyu’ persimmon buds during dormancy. Branches were collected between March and August 2015. Dormancy was evaluated by biological testing of isolated node cuttings at 25 °C and a photoperiod of 16 h. The variables analyzed were water content; reducing sugar content; respiratory activity; activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and polyphenol oxidase (PPO) enzymes; hydrogen peroxide content (H2O2) and lipid peroxidation. At the end of March 2015, the plants were already dormant, and the leaves and fruits present indicated a paradormancy effect. Induction of endodormancy may have occurred in June 2015, when chilling hours (CH) below 7.2 °C and higher CH below 12 °C began to accumulate, which coincided with the period in which there was a decrease in water content and respiratory activity, an increase in reducing sugars, a decrease in SOD, CAT, APX and PPO and an increase in H2O2. After an accumulation of 553 CH below 12 °C, the budburst capacity increased, and the buds presented increased water content, decreased reducing sugars content, increased respiratory activity, low activity in SOD, CAT, APX and POD and high levels of H2O2.


Author(s):  
A. J. Na’Allah ◽  
M. Y. Iliyasu ◽  
U. S. Haruna ◽  
A. Ahmad ◽  
S. O. Oguche ◽  
...  

Background of Study: Plant waste such as rice husk and groundnut shell are generated in large amounts, these waste presents a tremendous pollution to the environment. Worldwide, these wastes are often simply dumped into landfills and oceans or used as animal feeds. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy in order to minimize environmental damages and to meet energy demands of the growing population. Aim: To produce bioethanol from rice husk and groundnut shell using local strains of Zymomonas mobilis and Saccharomyces cerevisiae. Place and Duration of Study: Conducted at the Microbiology Laboratory of Abubakar Tafawa Balewa University Bauchi, Bauchi state, Nigeria, between April to June, 2021. Methods: Groundnut shell and Rice husk were collected from local milling center. The wastes were powdered, sieved and used as carbon source. Proximate composition of the subsrate was done and the total carbohydrate was determined by difference. The sum of the percentage moisture, ash, crude lipid, crude protein and crude fibre was subtracted from 100. Zymomonas mobilis and Saccharomyces cerevisiae were isolated from rotten sweet oranges and locally fermented beverage (‘kunun-zaki’) respectively by growing them on Malt Yeast Peptone Glucose Agar (MYPGA) after which they were further screened for their ability to tolerate ethanol and they serve as organisms for fermentation. The enzyme α- amylase was used for hydrolysis. The fermented substrates were distilled at 78oC and the distillate was collected as bioethanol in a conical flask. UV-VIS spectrophotometer was used to determine the absorbance of each concentration (0, 0.2, 0.4, 0.6 and 0.8cm3) of reducing sugar content of the hydrolysates and the bioethanol produced by developing a standard curve at a wavelength of 491nm and 588nm respectively. The concentration of reducing sugar and bioethanol was determined using a reference line from the Standard curve. Results: Proximate analysis done shows that rice husk have 70.09% carbohydrates while groundnut shell has 65.09% carbohydrates. Groundnut shell yielded the highest reducing sugar of 5.096%. Rice husk yielded the lowest quantity of reducing sugar with a total yield of 2.962%. Maximum concentration of bioethanol of 0.971% was produced from the combination of Saccharomyces cerevisiae and Zymomonas mobilis from groundnut shell. The lowest concentration of 0.121% of bioethanol was produced when Saccharomyces cerevisiae was used on rice husk hydrolysates. The synergistic relationship of Saccharomyces cerevisiae and Zymomonas mobilis yielded the maximum bioethanol when compared with the yield obtained when the organisms were used singly. Zymomonas mobilis produced highest bioethanol content when the organisms are used single. Conclusion: This study demonstrates the potentiality of local strains of Saccharomyces cerevisiae and Zymomonas mobilis isolated from rotten sweet orange and locally fermented beverage (‘kunun-zaki’) to produce bioethanol by fermenting the rice husk and groundnut shell hydrolysates.


2021 ◽  
Vol 11 (2) ◽  
pp. 357-363
Author(s):  
Soeprijanto Soeprijanto ◽  
Lailatul Qomariyah ◽  
Afan Hamzah ◽  
Saidah Altway

Cassava solid waste (Onggok) is a by-product of the starch industry containing a lot of fiber, especially cellulose and hemicellulose. It has the potential to be converted to bioethanol. This work aimed to evaluate the effect of feedstocks ratio for the optimal bioethanol production via enzymatic and acidic hydrolysis process in a batch fermentation process. The effect of alpha-amylase and glucoamylase activities was studied. The sulfuric acid concentrations in the hydrolysis process in converting cassava into reducing sugar were also investigated. The reducing sugar was then fermented to produce ethanol. Enzymatic and chemical hydrolysis was carried out with the ratio of onggok(g)/water(L), 50/1, 75/1, and 100/1 (w/v). In the enzymatic hydrolysis, 22.5, 45, and 67.5 KNU (Kilo Novo alpha-amylase Unit) for liquefaction; and 65, 130, and 195 GAU (Glucoamylase Unit) for saccharification, respectively of enzymes were applied. The liquefaction was carried out at 90-100⁰C for 2 hours. The saccharification was executed at 65 ⁰C for 4 hours. Meanwhile, the acidic hydrolysis operating condition was at 90-100 ⁰C for 3 hours. The fermentation was performed at pH 4.5 for 3 days. Fourier Transform Infra-Red (FTIR) analysis was conducted to evaluate the hydrolysis process. The highest ethanol was yielded in the fermentation at 8.89% with the ratio of onggok to water 100:1, 67.5 KNU of alpha-amylase, and 195 GAU of glucoamylase. Ethanol was further purified utilizing fractional distillation. The final ethanol concentration was at 93-94%.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 553
Author(s):  
Eduardo Santana Aires ◽  
Carlos Alberto Aragão ◽  
Bárbara França Dantas ◽  
João Domingos Rodrigues ◽  
Elizabeth Orika Ono

High solar radiation in tropical regions can affect the development, physiology, and biochemistry of plants. Our aim with this research was to evaluate the biochemical responses and production of iceberg lettuce cultivars under environments with different shadings. An experiment under field conditions was installed in a 4 × 4 factorial scheme. Four cultivars of iceberg lettuce (Great Lakes, Winslow, Delicia, and Balsamo) and four environments with different shadings (three types of shading screens: red, ChromatiNet®, and black; and treatment under the full sun) were evaluated. Forty-five days after transplanting, the plants were harvested, and the biomass was weighed to obtain the fresh consumable part (FCP) and the biochemical parameters: total soluble sugar (TSS), reducing sugar (RS), and the activity of SOD, CAT, and POD. We found that shading modulates biochemical and productive responses of iceberg lettuce, and the main microclimatic factor related to these responses was solar radiation. We observed a negative correlation between RS and FCP. The solar radiation between 16 and 18 MJ·m−2·day−1, observed in the environments with a black screen and ChromatiNet®, promoted the highest activity of the SOD enzyme and average levels of TSS and RS, providing higher FCP of the cultivars Delícia and Balsamo in high temperatures period.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiquan Wang ◽  
Suqing Wu ◽  
Chunzhen Fan ◽  
Xiangyong Zheng ◽  
Wei Zhang ◽  
...  

AbstractTo enhance the reducing sugar yield in enzymatic hydrolysis, various factors (NaOH concentration, solid content and pre-treatment time) that affect the pre-treatment process were investigated and evaluated based on the reducing sugar yield of the subsequent enzymatic hydrolysis. The enzymatic hydrolysis was based on the cellulase from Trichoderma reesi ATCC 26921, the optimum NaOH pre-treatment conditions were an NaOH concentration of 1.0% (w/w), a solid content of 5.0% (w/v) and a pre-treatment time of 60 min. Various parameters that affect the enzymatic hydrolysis of wheat straw, including the solid content, enzyme loading, pH and hydrolysis time, were investigated and optimized through a Box–Behnken design and response surface methodology. The predicted optimum conditions for enzymatic hydrolysis were a solid content of 8.0% (w/v), an enzyme loading of 35 FPU/g substrate, a temperature of 50 °C, a pH of 5.3 and a hydrolysis time of 96 h. The experimental result showed that the maximum reducing sugar yield was 60.73% (53.35% higher than the wheat straw without NaOH pre-treatment), which is in accordance with the predicted conditions.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8053
Author(s):  
Eun-Young Park ◽  
Jung-Kyu Park

This study investigated the production of fermentable sugars from carbohydrate-rich macroalgae Saccharina japonica using sequential hydrolysis (hydrothermal acid pretreatment and enzymatic hydrolysis) to determine the maximum reducing sugar yield (RSy). The sequential hydrolysis was predicted by three independent variables (temperature, time, and HCl concentration) using response surface methodology (RSM). Enzymatic hydrolysis (8.17% v/wbiomass Celluclast® 1.5 L, 26.4 h, 42.6 °C) was performed after hydrothermal acid pretreatment under predicted conditions (143.6 °C, 22 min, and 0.108 N HCl concentration). Using this experimental procedure, the yields of hydrothermal acid pretreatment, enzymatic hydrolysis, and sequential hydrolysis were 115.6 ± 0.4 mg/g, 117.7 ± 0.3 mg/g, and 183.5 ± 0.6 mg/g, respectively. Our results suggested that sequential hydrolysis of hydrothermal acid pretreatment and enzymatic hydrolysis was more efficient than their single treatment.


2021 ◽  
Vol 14 (1) ◽  
pp. 95-116
Author(s):  
E. Savchina ◽  
A.-M. Borta ◽  
L. Csige ◽  
Z. Győri ◽  
J. Szepesi ◽  
...  

Abstract Hungary and Moldova are excelling in unique wines and alcoholic beverages that could qualify for the protected geographical indication (PGI) by emphasizing parameters attributable to the geographical area, production or processing methods. In this study, we have assessed some parameters of wine and brandy samples looking for specificities. The studied samples were of Moldovan and Hungarian Cabernet Sauvignon red wines, Hungarian Furmint white wines, and Moldovan wine distillate/brandy called Divin. The assessed samples were evaluated for: total polyphenol and flavonoid, ethanol, malic, citric, lactic, tartaric acids, reducing sugar, glycerol, carbon dioxide, total and free SO2 content as well as for total acidity, volatile acidity, pH, and wine density. Our results indicate that despite the relatively close geographical vicinity of Hungary and Moldova, the wines produced in the two countries have specific composition, antioxidant activity, and sensorial properties. Thus, the registration of such wines as PGI is clearly justified, and such a label itself does represent a competitive advantage worth promoting.


Sign in / Sign up

Export Citation Format

Share Document