nicotine treatment
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 32)

H-INDEX

43
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander C. Conley ◽  
Alexandra P. Key ◽  
Warren D. Taylor ◽  
Kimberly M. Albert ◽  
Brian D. Boyd ◽  
...  

Late-life depression (LLD) is a debilitating condition that is associated with poor response to antidepressant medications and deficits in cognitive performance. Nicotinic cholinergic stimulation has emerged as a potentially effective candidate to improve cognitive performance in patients with cognitive impairment. Previous studies of nicotinic stimulation in animal models and human populations with cognitive impairment led to examining potential cognitive and mood effects of nicotinic stimulation in older adults with LLD. We report results from a pilot study of transdermal nicotine in LLD testing whether nicotine treatment would enhance cognitive performance and mood. The study used electroencephalography (EEG) recordings as a tool to test for potential mechanisms underlying the effect of nicotine. Eight non-smoking participants with LLD completed EEG recordings at baseline and after 12 weeks of transdermal nicotine treatment (NCT02816138). Nicotine augmentation treatment was associated with improved performance on an auditory oddball task. Analysis of event-related oscillations showed that nicotine treatment was associated with reduced beta desynchronization at week 12 for both standard and target trials. The change in beta power on standard trials was also correlated with improvement in mood symptoms. This pilot study provides preliminary evidence for the impact of nicotine in modulating cortical activity and improving mood in depressed older adults and shows the utility of using EEG as a marker of functional engagement in nicotinic interventions in clinical geriatric patients.


Author(s):  
Iman M. Mourad ◽  
◽  
Neveen A. Noor ◽  
Haitham S. Mohammed ◽  
Heba S. Aboul Ezz ◽  
...  

Objective: Caffeine and nicotine are the most consumed psychostimulants worldwide. Although the effects of each drug alone on the central nervous system (CNS) were studied extensively, the literature on the neurochemical and electrophysiological effects of their combined treatments is scarce. The present study investigates the cortical electrophysiological and neurochemical alterations induced by acute administration of caffeine and nicotine in rats. Methods: Rats received caffeine and nicotine with 1h interval between the two treatments. Results: Caffeine and nicotine administration resulted in a significant decrease in the concentrations of cortical amino acid neurotransmitters namely glutamate, aspartate, glycine and taurine while γ-aminobutyric acid (GABA) was significantly increased. An increased cortical lipid peroxidation and decreased reduced glutathione and nitric oxide levels and acetylcholinesterase and Na+, K+-ATPase activities were also observed. The electroencephalogram (EEG) showed an increase in delta frequency power band while theta, beta-1 and beta-2 were decreased after caffeine and nicotine treatment. These findings suggest that caffeine and nicotine adversely exacerbate their stimulant effects. This was manifested by the EEG changes and mediated by increasing cholinergic transmission, disturbing the balance between the excitatory and inhibitory amino acids leading to oxidative stress.


2021 ◽  
Author(s):  
Brady S. Mannett ◽  
Braden Capt ◽  
Krista Pearman ◽  
Lori M. Buhlman ◽  
John M. VandenBrooks ◽  
...  

Abstract Strong epidemiological evidence and studies in models of Parkinson’s disease (PD) suggest that nicotine may be therapeutically beneficial in PD patients. However, a number of clinical trials utilizing nicotine in PD patients have had mixed results, indicating that either nicotine is not beneficial in PD patients, or an important aspect of nicotine therapy was absent. Here we show that continuous early nicotine administration improves both climbing and flight deficiencies present in homozygous park25 mutant PD model Drosophila melanogaster. Using a new climbing assay, we identify several climbing deficiencies in this PD model that are improved or rescued by nicotine treatment. Amongst these benefits, it appears that nicotine improves the ability of the park25 flies to descend the climbing vial by being able to climb down more. Importantly, we show that in order for nicotine benefits on climbing and flight to happen, nicotine administration must occur in a discrete time frame following adult fly eclosure: within one day for climbing or five days for flight. This therapeutic window of nicotine administration may help to explain its lack of efficacy in human clinical trials, suggesting a need to test earlier nicotine therapy in PD patients.


Author(s):  
Shuiqing Hu ◽  
Jinlan Luo ◽  
Menglu Fu ◽  
Liman Luo ◽  
Yueting Cai ◽  
...  

Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide (NAM, SIRT1 inhibitor) simultaneously for four weeks. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2-/- mice without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced MMP2 upregulation via SIRT1-mediated YAP deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting-ting Meng ◽  
Wei Wang ◽  
Fan-liang Meng ◽  
Shu-ya Wang ◽  
Hui-hui Wu ◽  
...  

Nicotine contained in traditional cigarettes, hookahs, and e-cigarettes is an important risk factor for cardiovascular disease. Our previous study showed that macroautophagic flux impairment occurred under nicotine stimulation. However, whether nicotine influences mitochondrial dynamics in neonatal rat ventricular myocytes (NRVMs) is unclear. The purpose of this study was to explore the effects and potential mechanism of nicotine on mitophagy, mitochondrial dynamics, apoptosis, and the relationship between these processes in NRVMs. Our results showed that nicotine exposure increased mitochondria-derived superoxide production, decreased mitochondrial membrane potential, and impaired PINK1/Parkin-mediated mitophagic flux in NRVMs. Interestingly, nicotine significantly promoted dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and suppressed mitofusin (MFN)-mediated fusion, which was also observed in the bafilomycin A1-treated group. These results suggest that mitophagic flux impairment may contribute to Drp-1-mediated mitochondrial fission. Finally, nicotine caused excessive mitochondrial fission and contributed to apoptosis, which could be alleviated by mdivi-1, an inhibitor of Drp1. In addition to CTSB, as we previously reported, the enzyme activity of cathepsin L (CTSL) was also decreased in lysosomes after stimulation with nicotine, which may be the main cause of the hindered mitophagic flux induced by nicotine in NRVMs. Pretreatment with Torin 1, which is an inhibitor of mTOR, activated CTSL and ameliorated nicotine-induced mTOR activation and mitophagy impairment, decreased mitochondria-derived superoxide production, and blunted mitochondrial fission and apoptosis. Pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) or inhibitors of p38 and JNK, which could also alleviate mitophagy impairment, exhibited similar effects as Torin1 on mitochondria. Taken together, our study demonstrated that nicotine treatment may lead to an increase in Drp1-mediated mitochondrial fission by blocking mitophagic flux by weakening the enzyme activity of CTSL and activating the ROS/p38/JNK signaling pathway. Excessive mitochondrial fission induced by nicotine ultimately leads to apoptosis. Torin1 restored the decreased CTSL enzyme activity by removing excessive ROS and alleviated the effects of nicotine on mitophagic flux, mitochondrial dynamics, and apoptosis. These results may provide new evidence on the relationship between mitophagic flux and mitochondrial dynamics and new perspectives on nicotine’s effects on mitochondrial dynamics in cardiomyocytes.


Author(s):  
Sergio Raez-Villanueva ◽  
Amrita Debnath ◽  
Daniel B. Hardy ◽  
Alison C. Holloway

Abstract Prenatal exposure to nicotine, tobacco’s major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.


2021 ◽  
Vol 22 (9) ◽  
pp. 4775
Author(s):  
Cristiano Bombardi ◽  
Francis Delicata ◽  
Claudio Tagliavia ◽  
Annamaria Grandis ◽  
Massimo Pierucci ◽  
...  

Serotonin (5-HT) is important in some nicotine actions in the CNS. Among all the 5-HT receptors (5-HTRs), the 5-HT2CR has emerged as a promising drug target for smoking cessation. The 5-HT2CRs within the lateral habenula (LHb) may be crucial for nicotine addiction. Here we showed that after acute nicotine tartrate (2 mg/kg, i.p.) exposure, the 5-HT2CR agonist Ro 60-0175 (5–640 µg/kg, i.v.) increased the electrical activity of 42% of the LHb recorded neurons in vivo in rats. Conversely, after chronic nicotine treatment (6 mg/kg/day, i.p., for 14 days), Ro 60-0175 was incapable of affecting the LHb neuronal discharge. Moreover, acute nicotine exposure increased the 5-HT2CR-immunoreactive (IR) area while decreasing the number of 5-HT2CR-IR neurons in the LHb. On the other hand, chronic nicotine increased both the 5-HT2CR-IR area and 5-HT2CR-IR LHb neurons in the LHb. Western blot analysis confirmed these findings and further revealed an increase of 5-HT2CR expression in the medial prefrontal cortex after chronic nicotine exposure not detected by the immunohistochemistry. Altogether, these data show that acute and chronic nicotine exposure differentially affect the central 5-HT2CR function mainly in the LHb and this may be relevant in nicotine addiction and its treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinjia Han ◽  
Wei Li ◽  
Ping Li ◽  
Zheng Zheng ◽  
Baohua Lin ◽  
...  

Changes in decidual macrophage polarization affect local inflammatory microenvironment and lead to adverse pregnancy outcomes. However, the regulatory mechanism of macrophage polarization in preeclampsia (PE) remains unclear. In this study, we found that α7nAChR expression was significantly down-regulated in decidual macrophages in PE patients compared to normal pregnant women, accompanied by a reduced proportion of M2 phenotype and an increased proportion of M1 phenotype; these results suggested that the reduced α7nAChR activity might contribute to changes in the polarization of decidual macrophages. Then, we further investigated the regulatory role of α7nAChR activation by nicotine on decidual macrophage polarization and placental remodeling in the PE-like mouse model. The PE mice were obtained by i.p. injection of 10 µg/kg lipopolysaccharide (LPS) gestational day (GD) 13, and 40 µg/kg LPS daily until GD16. Subcutaneous injection of 1.0 mg/kg nicotine was administrated from GD14 to GD18. Nicotine treatment increased the decreased M2 phenotype and inhibited the increased M1 phenotype in decidua of pregnant mice induced by LPS. The levels of pro-inflammatory cytokines in decidua were higher but the levels of anti-inflammatory cytokines were lower in PE mice compared to the controls, nicotine reversed these changes. The level of choline acetyltransferase (CHAT) was reduced in the LPS-treated group, it was increased following nicotine treatment. Damage of spiral artery remodeling and down-regulation of markers related to trophoblast invasion in placentas were found in PE mice; nicotine improved these pathological structures of placentas. α-bungarotoxin (α-BGT) which is specific antagonist for α7nAChR could abolish the effects of nicotine on decidual macrophage polarization, trophoblast arrangement and vascular structure in placental tissue in PE mice. These results suggest that α7nAChR plays an important regulatory role in maternal-fetal inflammation and placental remodeling in preeclampsia and may provide a theoretical basis for the discovery of new strategies for preeclampsia.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 278
Author(s):  
Chun Fang Hu ◽  
Xiao Yan Liao ◽  
Dan Dan Xu ◽  
Yi Bin Ruan ◽  
Feng Guang Gao

K48-linked ubiquitination determining antigen degradation and the endosomal recruitments of p97 and Sec61 plays vital roles in dendritic cell (DC) cross-presentation. Our previous studies revealed that nicotine treatment increases bone marrow-derived dendritic cell (BM-DC) cross-presentation and promotes BM-DC-based cytotoxic T lymphocyte (CTL) priming. But the effect of nicotine on K48-linked ubiquitination and the mechanism of nicotine-increased BM-DC cross-presentation are still uncertain. In this study, we first demonstrated that ex vivo nicotine administration obviously increased K48-linked ubiquitination in BM-DC. Then, we found that K48-linked ubiquitination was essential for nicotine-augmented cross-presentation, BM-DC-based CTL priming, and thereby the superior cytolytic capacity of DC-activated CTL. Importantly, K48-linked ubiquitination was verified to be necessary for nicotine-augmented endosomal recruitments of p97 and Sec61. Importantly, mannose receptor (MR), which is an important antigenic receptor for cross-presentation, was exactly catalyzed with K48-linked ubiquitination by the treatment with nicotine. Thus, these data suggested that K48-linked ubiquitination contributes to the superior adaptive immunity of nicotine-administrated BM-DC. Regulating K48-linked ubiquitination might have therapeutic potential for DC-mediated immune therapy.


Sign in / Sign up

Export Citation Format

Share Document