lagrange's theorem
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 1)

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Qian Xiao ◽  
Chao Ma ◽  
Shuailing Wang

In this paper, we consider continued β-fractions with golden ratio base β. We show that if the continued β-fraction expansion of a non-negative real number is eventually periodic, then it is the root of a quadratic irreducible polynomial with the coefficients in Z[β] and we conjecture the converse is false, which is different from Lagrange’s theorem for the regular continued fractions. We prove that the set of Lévy constants of the points with eventually periodic continued β-fraction expansion is dense in [c, +∞), where c=12logβ+2−5β+12.


2021 ◽  
pp. 73-80
Author(s):  
Steven J. Rosenberg
Keyword(s):  

2021 ◽  
Vol 6 (9) ◽  
pp. 9290-9308
Author(s):  
Supriya Bhunia ◽  
◽  
Ganesh Ghorai ◽  
Qin Xin ◽  

2021 ◽  
Vol 7 (3) ◽  
pp. 3321-3344
Author(s):  
Aman Ullah ◽  
◽  
Muhammad Ibrahim ◽  
Tareq Saeed ◽  
◽  
...  

<abstract><p>In this paper, the notion of fuzzy AG-subgroups is further extended to introduce fuzzy cosets in AG-groups. It is worth mentioning that if $ A $ is any fuzzy AG-subgroup of $ G $, then $ \mu_{A}(xy) = \mu_{A}(yx) $ for all $ x, \, y\in G $, i.e. in AG-groups each fuzzy left coset is a fuzzy right coset and vice versa. Also, fuzzy coset in AG-groups could be empty contrary to fuzzy coset in group theory. However, the order of the nonempty fuzzy coset is the same as the index number $ [G:A] $. Moreover, the notions of fuzzy quotient AG-subgroup, fuzzy AG-subgroup of the quotient (factor) AG-subgroup, fuzzy homomorphism of AG-group and fuzzy Lagrange's theorem of finite AG-group is also introduced.</p></abstract>


Author(s):  
Robin Wilson

‘More triangles and squares’ explores Diophantine equations, named after the mathematician Diophantus of Alexandria. These are equations requiring whole number solutions. Which numbers can be written as the sum of two perfect squares? Joseph-Louis Lagrange’s theorem guarantees that every number can be written as the sum of four squares, and Edward Waring correctly suggested that there are similar results for higher powers. In 1637, Fermat conjectured that no three positive integers, a, b, and c, can satisfy the equation an+bn=cn, if n is greater than 2. Known as ‘Fermat’s last theorem’, this conjecture was eventually proved by Andrew Wiles in 1995.


Sign in / Sign up

Export Citation Format

Share Document