cylindrical specimen
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 11 (21) ◽  
pp. 10489
Author(s):  
Shaheen Perween ◽  
Muhammad Fahad ◽  
Maqsood A. Khan

Additive manufacturing (AM) has a greater potential to construct lighter parts, having complex geometries with no additional cost, by embedding cellular lattice structures within an object. The geometry of lattice structure can be engineered to achieve improved strength and extra level of performance with the advantage of consuming less material and energy. This paper provides a systematic experimental evaluation of a series of cellular lattice structures, embedded within a cylindrical specimen and constructed according to terms and requirements of ASTMD1621-16, which is standard for the compressive properties of rigid cellular plastics. The modeling of test specimens is based on function representation (FRep) and constructed by fused deposition modeling (FDM) technology. Two different test series, each having eleven test specimens of different parameters, are printed along with their replicates of 70% and 100% infill density. Test specimens are subjected to uniaxial compressive load to produce 13% deformation to the height of the specimen. Comparison of results reveals that specimens, having cellular lattice structure and printed with 70% infill density, exhibit greater strength and improvement in strength to mass ratio, as compared to the solid printed specimen without structure.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012113
Author(s):  
R J Torrent ◽  
G O Zino

Abstract Porosity and permeability are important properties of porous materials, such as rocks and concrete. This paper presents the physical-mathematical modelling of a novel test, based on one previously developed by one of the authors (standardized in Switzerland, Japan and China) for measuring the air-permeability of concrete structures. In the present case, a cylindrical specimen is placed inside an air-tight cell, subjected to an initial vacuum pressure P 0, which is afterwards isolated from the pump. The rate of pressure increase (due to the extraction of air originally at atmospheric pressure Pa ) is related to the coefficient of permeability of the material whilst the final pressure attained is a function of the porosity (total amount of air extracted). The analysis assumes a unidirectional radial flow of air, which can be achieved by a special serial three-chamber vacuum cell (with pressure regulation of the external chambers) or by an air-tight sealing of the extreme faces of the cylinder. The analysis is developed under the assumption of viscous laminar flow. To account for the molecular diffusion flow, the test can be performed under vacuum (P 0 ≪ Pa) and under overpressure (P 0 ≫ Pa ), enabling the application of the Klinkenberg correction to get the intrinsic coefficient of permeability.


Author(s):  
Anant Bhardwaj ◽  
◽  
Krovvidi Srinivas ◽  
Rajiv Chaudhary ◽  
◽  
...  

Magnetic Abrasive Finishing is a significant process for finishing up to the micro-level. However, with the advancement of technology and hybrids like Viscoelastic magnetic abrasive Finishing and Magnetic abrasive Flow machining, it has become a nano finishing process. To improve the finishing process, the researchers have made a Model and tested the feasibility of the wind turbine magnet in Finishing. The Maxwell simulations were done for the cylindrical Specimen of Brass, Steel Aluminum. The simulations results were in accordance with the fact that the proposed wind turbine magnet may be used for the simulations.


2021 ◽  
Vol 901 ◽  
pp. 164-169
Author(s):  
Tomohiro Sato ◽  
Shuhei Ishikawa ◽  
Kenichi Saitoh ◽  
Masanori Takuma ◽  
Yoshimasa Takahashi

Sulfide was used as solid lubricant, and MoS2 was popular. It was used industry as powder shape. Sulfur as oil additive; ZDDP, MoTDC were also well known. These composites make tribofilm which prevent seizure, scoring and some tribological troubles. In this paper, sulfides were synthesized by powder metallurgy technics. In addition, these sulfides were mixed with bronze powders and sintered as cylindrical specimen. As a result of the friction test in the lubricated condition, tribofilm were covered with specimen surface. By XPS observation, sulfides and oxides were detected on the specimen surface. In the test, additive was not contained in the lubricant because PAO as base oil was adapted. However, sulfide in the specimen affect the making the tribofilm, especially when bornite (Cu5FeS4) was used.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4876
Author(s):  
Mohd Kaswandee Razali ◽  
Man Soo Joun ◽  
Wan Jin Chung

We develop a new flow model based on the Swift method, which is both versatile and accurate when used to describe flow stress in terms of strain hardening and damage softening. A practical issue associated with flow stress at room temperature is discussed in terms of tensile testing of a cylindrical specimen; we deal with both material identification and finite element predictions. The flow model has four major components, namely the stress before, at, and after the necking point and around fracture point. The Swift model has the drawback that not all major points of stress can be covered simultaneously. A term of strain to the third or fourth power (the “second strain hardening exponent”), multiplied and thus controlled by a second strain hardening parameter, can be neglected at small strains. Any effect of the second strain hardening exponent on the identification of the necking point is thus negligible. We use this term to enhance the flexibility and accuracy of our new flow model, which naturally couples flow stress with damage using the same hardening constant as a function of damage. The hardening constant becomes negative when damage exceeds a critical value that causes a drastic drop in flow stress.


Author(s):  
György Pátzay ◽  
János Nyőgér ◽  
Ottó Zsille ◽  
József Csurgai ◽  
Ferenc Feil ◽  
...  

Computer Program ILT15 was earlier developed to accompany a new leach test for solidified radioactive waste forms in the Hungarian NPP Paks. The program was designed to be used as a tool for performing the calculations necessary to analyze leach test data, a modelling program to determine if diffusion is the operating leaching mechanism (and, if not, to indicate other possible mechanisms), and a means to make extrapolations using the diffusion models. The program uses computational algorithm of ASTM C1308 standard. Now we have developed another computational algorithm based on a Partial Differential Equation (PDE) of a cylindrical specimen, solved the PDE by a Crank-Nicolson Finite Difference Method (FDM) and calculated by integration the eluted amount of a given component in time. The new solution more accurate method was integrated into the existing ILT15 computer program and the resulting new ILT20 program is able to calculate the Incremental/Cumulative Fraction Leached IFL/CFL) either by ASTM or PDE numerical solution methods.ILT20 program is written in C++ in the Borland C++ Builder programming environment. A detailed description of application of this upgraded modelling computer program is given.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1012
Author(s):  
Alexander Ulbricht ◽  
Gunther Mohr ◽  
Simon J. Altenburg ◽  
Simon Oster ◽  
Christiane Maierhofer ◽  
...  

Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4157
Author(s):  
Qiuhua Rao ◽  
Zelin Liu ◽  
Chunde Ma ◽  
Wei Yi ◽  
Weibin Xie

In recent decades, researchers have paid more attention to the indirect tensile test than to the direct tensile test (DTT) of rocks, mainly due to difficulties in the alignment and the stress concentration at the end of an intact cylindrical specimen. In this paper, a new flattened cylinder specimen and a clamp device were designed to obtain the true tensile strength of the rock in DTT. Stress distributions of the specimen with different lengths (l) and cutting thicknesses (t) were analyzed, and damage processes of the specimen were monitored by the Digital Image Correlation (DIC), the fractured sections were also scanned. Different mechanical parameters were also obtained by the DTT of the flattened cylinder specimens and the intact cylinder specimens, as well as the Brazilian disc. Research results show that the tensile strength obtained by DTT is smaller than the Brazilian disc and is slightly greater than the intact cylindrical specimen. The flattened cylinder specimen with 0.20 ≤ 2t/D < 0.68 and 0.10 ≤ l/D ≤ 0.20 is recommended to measure the true tensile strength of rock material in DTT. This new shape of the specimen is promising to be extended in the uniaxial or triaxial direct tension test.


2021 ◽  
Vol 3 (1) ◽  
pp. 58-63
Author(s):  
Dewi Setiawati ◽  
Bambang Jatmika ◽  
Muhammad Rizal Aditya

This study aims to determine the effects of nickel slag in the concrete mixture and on its compressive strength value. In this study, cylindrical specimen having 15cm diameter and 30cm height is used. We have used nickel slag as substitute of coarse aggregate in weight ratio of 25%, 50% & 100% respectively of coarse aggregate in sample. The ratio of concrete mixture used in this study is comprised of ratio 1:2:3 of cement, sand & gravel respectively. Compressive strength was used as a parameter for testing the samples in this study.             Test was performed using compression Testing machine, from the test results, the mean value of the average compressive strength of cylindrical concrete at the age of 3 days with a 25% variant nickel slag is 134.02 kg / cm2, 50% variant nickel slag is 165.76 kg / cm2, and 70% variant nickel slag is 148.92 kg / cm2, at age 7 days for the 25% is 219.61 kg / cm2, the 50% variant is 191.27 kg / cm2, and the 70% is 181.57 kg / cm2, while at the age of 28 days the 25% is 275.09 kg / cm2, the 50% iis equal to 296.28 kg / cm2, and the 70% is 225.37kg / cm2  


2021 ◽  
Vol 266 ◽  
pp. 09003
Author(s):  
D.O. Shishkin ◽  
P.A. Petrov

This article discusses the torsion problem of a continuous cylindrical specimen used to construct a hardening curve. A brief review of the methods for processing the results of the method of torsion of a cylindrical specimen is given. The possibility of using the inverse method to determine the material model in the case of the torsion of the continuous cylindrical specimen made of steel 20H is shown. By means of QFORM 9.0 software package virtual experiment connected with torsion of a cylindrical specimen is carried out. As a result of this research, the rheological model of steel 20His determined with a high degree of accuracy. The stress-strain state of the material was analyzed during the torsion of the specimen by means of the QFORM. The results of the virtual experiment are compared with the full-scale test.Anexceptionally good match of the results was obtained. The inverse method showed its efficiency and made it possibleto determine a rheological model of the material. The model accurately describes the experimental data. The resulting material model (for steel 20H) is valid in the following range of parameters: deformation temperature of 20°C, deformation rate of 0.5 s−1, the strain range of 0 to 2.5.


Sign in / Sign up

Export Citation Format

Share Document