marine plant
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Jodie Schlaefer ◽  
Alex Carter ◽  
Severine Choukroun ◽  
Robert Coles ◽  
Kay Critchell ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 253
Author(s):  
Mohammed Othman Aljahdali ◽  
Mohammad Habibur Rahman Molla ◽  
Foysal Ahammad

Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish’s skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score −8.5 kcal/mol, −8.0 kcal/mol and −7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.


2020 ◽  
Vol 11 ◽  
Author(s):  
Livan Delgado-Roche ◽  
Kethia González ◽  
Fernando Mesta ◽  
Beatriz Couder ◽  
Zaira Tavarez ◽  
...  

Marine plants are important sources of pharmacologically active metabolites. The aim of the present work was to evaluate the cytotoxic and antitumor activity of a polyphenolic fraction obtained from Thalassia testudinum marine plant and thalassiolin B in human colorectal cancer cells. Human cancer cell lines, including HCT15, HCT116, SW260, and HT29 were treated with tested products for cytotoxicity evaluation by crystal violet assay. The potential proapoptotic effect of these natural products was assessed by flow cytometry in HCT15 cells at 48 h using Annexin V-FITC/propidium iodide. In addition, reactive oxygen species (ROS) generation was measured by fluorescence using DCFH-DA staining, and sulfhydryl concentration by spectrophotometry. The in vivo antitumor activity of the polyphenolic fraction (25 mg/kg) was evaluated in a xenograft model in nu/nu mice. In vivo proapoptotic effect was also evaluated by immunohistochemistry using anti-caspase 3 and anti-Bcl-2 antibodies. The results showed that tested products exert colorectal cancer cell cytotoxicity. Besides, the tested products induced a significant increase (p < 0.05) of intracellular ROS generation, and a depletion of sulfhydryl concentration in HCT15 cells. The polyphenolic fraction arrested tumor growth and induced apoptosis in the xenograft mice model. These results demonstrate the cytotoxic activity of T. testudinum metabolites associated, at least, with ROS overproduction and pro-apoptotic effects. Here we demonstrated for the first time the antitumor activity of a T. testudinum polar extract in a xenograft mice model. These results suggest the potential use of T. testudinum marine plant metabolites as adjuvant treatment in cancer therapy.


2020 ◽  
Vol 259 ◽  
pp. 112960 ◽  
Author(s):  
Marzia Vasarri ◽  
Emanuela Barletta ◽  
Matteo Ramazzotti ◽  
Donatella Degl’Innocenti

2020 ◽  
Vol 247 ◽  
pp. 112252 ◽  
Author(s):  
Marzia Vasarri ◽  
Manuela Leri ◽  
Emanuela Barletta ◽  
Matteo Ramazzotti ◽  
Riccardo Marzocchini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document