kinetic energy budget
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Seth F. Zippel ◽  
J. Thomas Farrar ◽  
Christopher J. Zappa ◽  
Albert J. Plueddemann

MAUSAM ◽  
2021 ◽  
Vol 48 (1) ◽  
pp. 15-22
Author(s):  
B. PADMANABHAMURTY ◽  
PIALI CHAKRABORTY

    ABSTRACT. The various tenns of the turbulent kinetic energy budget in the surface layer over Jodhpur, India have been worked out and compared with established similarity relations. The turbulent production and dissipation tend to balance under moderately unstable conditions for most of the runs considered for investigation.    


Author(s):  
Shui-Xin Zhong ◽  
Wei-Guang Meng ◽  
Fu-You Tian

AbstractThe contributions of divergent and rotational wind components to the kinetic energy budget during a record-breaking rainstorm on 7 May 2017 over South China are examined. This warm-sector extreme precipitation caused historical maximum of 382.6 mm accumulated rainfall in 3 h over the Pearl River Delta (PRD) regions in South China. Results show that there was a high low-level southerly wind-speed tongue stretching into the PRD regions from the northeast of the South China Sea (SCS) during this extreme precipitation. The velocity potential exhibited a low-value center as well as a low-level divergence-center over the SCS. The rotational components of the kinetic energy (KR)-related terms were the main contribution-terms of the kinetic energy budget. The main contribution-terms of KR and the divergent component of kinetic energy (KD) were the barotropical and baroclinic processes-related terms due to cross-contour flow and the vertical flux divergence.


2020 ◽  
Vol 5 (12) ◽  
Author(s):  
T. Watanabe ◽  
C. B. da Silva ◽  
K. Nagata

2020 ◽  
Vol 47 (23) ◽  
Author(s):  
Peng Zhan ◽  
Daquan Guo ◽  
Ibrahim Hoteit

2020 ◽  
Vol 13 (10) ◽  
pp. 4993-5005
Author(s):  
Axel Kleidon ◽  
Lee M. Miller

Abstract. With the current expansion of wind power as a renewable energy source, wind turbines increasingly extract kinetic energy from the atmosphere, thus impacting its energy resource. Here, we present a simple, physics-based model (the Kinetic Energy Budget of the Atmosphere; KEBA) to estimate wind energy resource potentials that explicitly account for this removal effect. The model is based on the regional kinetic energy budget of the atmospheric boundary layer that encloses the wind farms of a region. This budget is shaped by horizontal and vertical influx of kinetic energy from upwind regions and the free atmosphere above, as well as the energy removal by the turbines, dissipative losses due to surface friction and wakes, and downwind outflux. These terms can be formulated in a simple yet physical way, yielding analytic expressions for how wind speeds and energy yields are reduced with increasing deployment of wind turbines within a region. We show that KEBA estimates compare very well to the modelling results of a previously published study in which wind farms of different sizes and in different regions were simulated interactively with the Weather Research and Forecasting (WRF) atmospheric model. Compared to a reference case without the effect of reduced wind speeds, yields can drop by more than 50 % at scales greater than 100 km, depending on turbine spacing and the wind conditions of the region. KEBA is able to reproduce these reductions in energy yield compared to the simulated climatological means in WRF (n=36 simulations; r2=0.82). The kinetic energy flux diagnostics of KEBA show that this reduction occurs because the total yield of the simulated wind farms approaches a similar magnitude as the influx of kinetic energy. Additionally, KEBA estimates the slowing of the region's wind speeds, the associated reduction in electricity yields, and how both are due to the depletion of the horizontal influx of kinetic energy by the wind farms. This limits typical large-scale wind energy potentials to less than 1 W m−2 of surface area for wind farms with downwind lengths of more than 100 km, although this limit may be higher in windy regions. This reduction with downwind length makes these yields consistent with climate-model-based idealized simulations of large-scale wind energy resource potentials. We conclude that KEBA is a transparent and informative modelling approach to advance the scientific understanding of wind energy limits and can be used to estimate regional wind energy resource potentials that account for the depletion of wind speeds.


Sign in / Sign up

Export Citation Format

Share Document