rf coil
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 69)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ao Li ◽  
Wei Xu ◽  
Xiao Chen ◽  
Bing-Nan Yao ◽  
Jun-Tao Huo ◽  
...  

Abstract High-temperature nuclear magnetic resonance (NMR) has proven to be very useful for detecting the temperature-induced structural evolution and dynamics in melts. However, the sensitivity and precision of high-temperature NMR probes are limited. Here we report a sensitive and stable high-temperature NMR probe based on laser-heating, suitable for in situ studies of metallic melts, which can work stably at the temperature of up to 2000 K. In our design, a well-designed optical path and the use of a water-cooled copper radio-frequency (RF) coil significantly optimize the signal-to-noise ratio (S/NR) at high temperatures. Additionally, a precise temperature controlling system with an error of less than ±1 K has been designed. After temperature calibration, the temperature measurement error is controlled within ±2 K. As a performance testing, 27Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ. Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than 0.001 ppm per hour. This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids, such as glass transition and liquid-liquid transition.


Author(s):  
Jérémie Clément ◽  
Raphaël Tomi-Tricot ◽  
Shaihan J. Malik ◽  
Andrew Webb ◽  
Joseph V. Hajnal ◽  
...  

Abstract Objective Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T. Methods The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation model was performed on phantom for the coil array. Results The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-error of 6.7% was found between measured and simulated transmit field maps on phantom. Conclusion The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.


Author(s):  
Viktor Puchnin ◽  
Viacheslav Ivanov ◽  
Mikhail Gulyaev ◽  
Yury Pirogov ◽  
Mikhail Zubkov
Keyword(s):  

Author(s):  
Kyle M. Gilbert ◽  
Paul I. Dubovan ◽  
Joseph S. Gati ◽  
Ravi S. Menon ◽  
Corey A. Baron

2021 ◽  
Vol 11 (23) ◽  
pp. 11445
Author(s):  
Jun-Sik Yoon ◽  
Jong-Min Kim ◽  
Han-Jae Chung ◽  
You-Jin Jeong ◽  
Gwang-Woo Jeong ◽  
...  

A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF coil. CPSCs were installed in the PFT 13C birdcage RF coil to cut the RF coil circuits during 1H MR imaging. Finite-difference time-domain (FDTD) electromagnetic (EM) simulations were performed to verify the performance of the proposed CPSCs. The performance of the PFT 13C birdcage RF coil with CPSCs was verified via phantom and in vivo MR studies. In the phantom MR studies, 1H MR images and 13C MR spectra were acquired and compared with each other using the 13C birdcage RF coil with and without the CPSCs. For the in vivo MR studies, hyperpolarized 13C cardiac MRS and MRSI of swine were performed. The proposed PFT 13C birdcage RF coil with CPSCs led to a percent image uniformity (PIU) reduction of 1.53% in the proton MR images when compared with the case without it. FDTD EM simulations revealed PIU reduction of 0.06% under the same conditions as the phantom MR studies. Furthermore, an SNR reduction of 5.5% was observed at 13C MR spectra of corn-oil phantom using the PFT 13C birdcage RF coil with CPSCs compared with that of the 13C birdcage RF coil without CPSCs. Utilizing the PFT 13C birdcage RF coil, 13C-enriched compounds were successfully acquired via in vivo hyperpolarized 13C MRS/MRSI experiments. In conclusion, the applicability and utility of the proposed 16-leg low-pass PFT 13C birdcage RF coil with CPSCs were verified via 1H MR imaging and hyperpolarized 13C MRS/MRSI studies using a 3.0 T MRI system.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259592
Author(s):  
Redouane Jamil ◽  
Franck Mauconduit ◽  
Caroline Le Ster ◽  
Philipp Ehses ◽  
Benedikt A. Poser ◽  
...  

For functional MRI with a multi-channel receiver RF coil, images are often reconstructed channel by channel, resulting into multiple images per time frame. The final image to analyze usually is the result of the covariance Sum-of-Squares (covSoS) combination across these channels. Although this reconstruction is quasi-optimal in SNR, it is not necessarily the case in terms of temporal SNR (tSNR) of the time series, which is yet a more relevant metric for fMRI data quality. In this work, we investigated tSNR optimality through voxel-wise RF coil combination and its effects on BOLD sensitivity. An analytical solution for an optimal RF coil combination is described, which is somewhat tied to the extended Krueger-Glover model involving both thermal and physiological noise covariance matrices. Compared experimentally to covSOS on four volunteers at 7T, the method yielded great improvement of tSNR but, surprisingly, did not result into higher BOLD sensitivity. Solutions to improve the method such as for example the t-score for the mean recently proposed are also explored, but result into similar observations once the statistics are corrected properly. Overall, the work shows that data-driven RF coil combinations based on tSNR considerations alone should be avoided unless additional and unbiased assumptions can be made.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ria Forner ◽  
Kyungmin Nam ◽  
Klijs J. de Koning ◽  
Tijl van der Velden ◽  
Wybe van der Kemp ◽  
...  

Surgery for tongue cancer often results in a major loss in quality of life. While MRI may be used to minimise the volume of excised tissue, often the full tumour extent is missed. This tumour extent may be detected with metabolic imaging. One of the main reasons for the lack of metabolic information on tongue cancer would be the absence of an x-nuclear coil with the tongue as a focus target. Metabolic MRI through 31P MRSI is known as a powerful tool to non-invasively study elevated cell proliferation and disturbed energy metabolism in tumours. Severe magnetic field non-uniformities are inherently caused by the substantial difference in magnetic susceptibilities of tissue and air in the mouth and its environs. Despite this, the wide chemical shift dispersion of 31P could still facilitate precise detection of the cell proliferation biomarkers, phospomonoesters and diesters, as well as energy metabolites ATP, inorganic phosphate, and phosphocreatine potentially mapped over the tongue or tumour in vivo. In this study, we present the first 31P MRSI data of the human tongue in vivo from healthy volunteers and a patient with a tongue tumour at 7 T MRI using a 1H 8-channel transceiver setup placed inside a body 31P transmitter, which is able to get a uniform excitation from the tongue while providing comfortable access to the patient. In addition, a user-friendly external 31P receiver array is used to provide high sensitivity (80%) comparable to an uncomfortable inner mouth loop coil positioned on the tongue. The primary aim is the demonstration of 31P metabolite profiles in the tongue and the differences between healthy and malignant tissue. Indeed, clear elevated cell proliferation expressed as enhanced phosphomonoesters is observed in the tumour vs. the healthy part of the tongue. This can be performed within a total scan duration of 30 min, comparable to clinical scans, with a spatial resolution of 1.5 cm for the 10-min 31P MRSI scan.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012171
Author(s):  
V Puchnin ◽  
V Ivanov ◽  
M Gulyaev ◽  
M Zubkov

Abstract We present the initial experimental results obtained using a two-part receive/transmit (Rx/Tx) radiofrequency (RF) coil design for small animals magnetic resonance imaging at 7 T. The assembly uses a butterfly-type coil tuned to 300 MHz for scanning the 1H nuclei and a non-resonant antenna with a metamaterial-inspired resonator tunable over wide frequency range for X-nuclei. 1H, 31P, 23Na and 13C are selected as test nuclei in this work. Coil simulations show the two parts of the RF-assembly to be efficiently operating at the required frequencies. Simulations and phantom imaging show sufficiently homogeneous transverse transmit RF fields and tuning capabilities for the pilot heteronuclear experiments.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012134
Author(s):  
P.S. Seregin ◽  
O.I. Burmistrov ◽  
G. Solomakha ◽  
E.I. Kretov ◽  
N.A. Olekhno ◽  
...  

Abstract Radiofrequency (RF) harvesting is a promising technology for the wireless power supply of various in-bore devices used in magnetic resonance imaging. However, current technical solutions in this area are based on the conversion of linearly polarized RF fields, and thus their efficiency is limited, as they interact only with a fraction of circularly polarized RF fields. In the present work, we introduce and experimentally realize a novel harvesting setup allowing for converting circularly polarized RF fields to direct current.


Sign in / Sign up

Export Citation Format

Share Document