anthropogenic fire
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
James R. Welch ◽  
Eduardo S. Brondizio ◽  
Carlos E. A. Coimbra Jr.

Abstract: Scientific research that purports to evaluate Indigenous fire regimes in the absence of ethnographically contextualized ecological data runs the risk of exacerbating the fire blame game and providing evidence to support distorted narratives advanced by anti-Indigenous advocates. Spatial analysis of fire scars in Indigenous territories can be an effective tool for characterizing cultural fire regimes in terms of distribution and frequency, especially when qualified by linkages to different local ecosystems. A recently published article drew on fire scar mapping from satellite imagery to assess anthropogenic fire distribution and frequency in the Pimentel Barbosa Indigenous Land, Central Brazil. The authors use their findings to characterize A'uwẽ (Xavante) use of fire as unmanaged and a model of unsustainable use of cerrado resources. In this article, we discuss Aguiar & Martins's recent paper in light of our long-term research on A'uwẽ hunting with fire in the Pimentel Barbosa Indigenous Land, arguing that A'uwẽ hunters do burn according to established cultural protocols, manage their use of fire for conservationist purposes, and do not cause environmental degradation by burning.


10.3375/20-5 ◽  
2021 ◽  
Vol 41 (4) ◽  
Author(s):  
William E. McClain ◽  
Charles M. Ruffner ◽  
John E. Ebinger ◽  
Greg Spyreas

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254529
Author(s):  
Giulia Gallo ◽  
Matthew Fyhrie ◽  
Cleantha Paine ◽  
Sergey V. Ushakov ◽  
Masami Izuho ◽  
...  

Structural and thermodynamic factors which may influence burnt bone survivorship in archaeological contexts have not been fully described. A highly controlled experimental reference collection of fresh, modern bone burned in temperature increments 100–1200˚C is presented here to document the changes to bone tissue relevant to preservation using Fourier transform infrared spectroscopy and X-ray diffraction. Specific parameters investigated here include the rate of organic loss, amount of bone mineral recrystallization, and average growth in bone mineral crystallite size. An archaeological faunal assemblage ca. 30,000 years ago from Tolbor-17 (Mongolia) is additionally considered to confirm visibility of changes seen in the modern reference sample and to relate structural changes to commonly used zooarchaeological scales of burning intensity. The timing of our results indicates that the loss of organic components in both modern and archaeological bone burnt to temperatures up to 700˚C are not accompanied by growth changes in the average crystallite size of bone mineral bioapatite, leaving the small and reactive bioapatite crystals of charred and carbonized bone exposed to diagenetic agents in depositional contexts. For bones burnt to temperatures of 700˚C and above, two major increases in average crystallite size are noted which effectively decrease the available surface area of bone mineral crystals, decreasing reactivity and offering greater thermodynamic stability despite the mechanical fragility of calcined bone. We discuss the archaeological implications of these observations within the context of Tolbor-17 and the challenges of identifying anthropogenic fire.


2021 ◽  
Vol 12 ◽  
Author(s):  
María Durán ◽  
Leticia San Emeterio ◽  
Leire Múgica ◽  
Iñigo Zabalgogeazcoa ◽  
Beatriz R. Vázquez de Aldana ◽  
...  

The plant microbiome is likely to play a key role in the resilience of communities to the global climate change. This research analyses the culturable fungal mycobiota of Brachypodium rupestre across a sharp gradient of disturbance caused by an intense, anthropogenic fire regime. This factor has dramatic consequences for the community composition and diversity of high-altitude grasslands in the Pyrenees. Plants were sampled at six sites, and the fungal assemblages of shoots, rhizomes, and roots were characterized by culture-dependent techniques. Compared to other co-occurring grasses, B. rupestre hosted a poorer mycobiome which consisted of many rare species and a few core species that differed between aerial and belowground tissues. Recurrent burnings did not affect the diversity of the endophyte assemblages, but the percentages of infection of two core species -Omnidemptus graminis and Lachnum sp. -increased significantly. The patterns observed might be explained by (1) the capacity to survive in belowground tissues during winter and rapidly spread to the shoots when the grass starts its spring growth (O. graminis), and (2) the location in belowground tissues and its resistance to stress (Lachnum sp.). Future work should address whether the enhanced taxa have a role in the expansive success of B. rupestre in these anthropized environments.


2021 ◽  
Author(s):  
James Millington ◽  
Oliver Perkins ◽  
Matthew Kasoar ◽  
Apostolos Voulgarakis

<div> <p>It is now commonly-understood that improved understanding of global fire regimes demands better representation of anthropogenic fire in dynamic global vegetation models (DGVMs). However, currently there is no clear agreement on how human activity should be incorporated into fire-enabled DGVMs and existing models exhibit large differences in the sensitivities of socio-economic variables. Furthermore, existing approaches are limited to empirical statistical relations between fire regime variables and globally available socio-economic indicators such as population density or GDP. Although there has been some limited representation in global models of the contrasting ways in which different classes of actors use or manage fires, we argue that fruitful progress in advancing representation of anthropogenic fire in DGVMs will come by building on agent-based modelling approaches. Here, we report on our progress developing a global agent-based representation of anthropogenic fire and its coupling with the JULES-INFERNO fire-enabled DGVM.  </p> </div><div> <p>Our modelling of anthropogenic fire adopts an approach that classifies ‘agent functional types’ (AFTs) to represent human fire activity based on land use/cover and Stephen Pyne’s fire development stages. For example, the ‘swidden’ AFT represents shifting cultivation farmers managing cropland and secondary vegetation in a pre-industrial development setting. This approach is based on the assumption that anthropogenic fire use and management is primarily a function of land use but influenced by socio-economic context, leading different AFTs to produce qualitatively distinct fire regimes. The literature empirically supports this assumption, however data on human fire interactions are fragmented across many academic fields (including anthropology, geography, land economics). Therefore, we developed a Database of Anthropogenic Fire Impacts (DAFI) containing 1798 case studies of fire use/management from 519 publications, covering more than 100 countries and all major biomes (except Arctic/Antarctic). We discuss DAFI development, patterns in the resulting data, and possible applications. Specifically, DAFI is used with ancillary data (e.g. biophysical, socio-economic indicators), classification and regression methods to test and refine our initial AFT classification, characterise AFT fire variables, and distribute AFTs spatially. Our model will then simulate AFT distributions for alternative scenarios of change (e.g. specified by the Shared Socioeconomic Pathways). </p> </div><div> <p>Coupling distinct models can be achieved in a variety of ways, but broadly we can distinguish between ‘loose’ coupling in which information flow is uni-directional, and ‘tight’ coupling in which information flows are integrated with feedbacks and dynamic updating. Our intention is to tightly couple our AFT model with JULES-INFERNO, such that fire use and suppression behaviours from the former influence simulated fire ignitions and burned area in the latter. Reciprocally, total burned area simulated by JULES-INFERNO will feedback to influence spatial distribution of AFTs in the next time step, modifying anthropogenic fire patterns for the next step of DGVM simulation. We discuss the potential for this tight model coupling to capture socio-ecological feedbacks in fire regimes, as well as  possible pitfalls and steps needed to test and verify model outputs. These are early steps in an important journey to improve representation of anthropogenic fire in DGVMs.</p> </div>


The Holocene ◽  
2021 ◽  
pp. 095968362098803
Author(s):  
Emma Rehn ◽  
Cassandra Rowe ◽  
Sean Ulm ◽  
Craig Woodward ◽  
Michael Bird

Fire has a long history in Australia and is a key driver of vegetation dynamics in the tropical savanna ecosystems that cover one quarter of the country. Fire reconstructions are required to understand ecosystem dynamics over the long term but these data are lacking for the extensive savannas of northern Australia. This paper presents a multiproxy palaeofire record for Marura sinkhole in eastern Arnhem Land, Northern Territory, Australia. The record is constructed by combining optical methods (counts and morphology of macroscopic and microscopic charcoal particles) and chemical methods (quantification of abundance and stable isotope composition of pyrogenic carbon by hydrogen pyrolysis). This novel combination of measurements enables the generation of a record of relative fire intensity to investigate the interplay between natural and anthropogenic influences. The Marura palaeofire record comprises three main phases: 4600–2800 cal BP, 2800–900 cal BP and 900 cal BP to present. Highest fire incidence occurs at ~4600–4000 cal BP, coinciding with regional records of high effective precipitation, and all fire proxies decline from that time to the present. 2800–900 cal BP is characterised by variable fire intensities and aligns with archaeological evidence of occupation at nearby Blue Mud Bay. All fire proxies decline significantly after 900 cal BP. The combination of charcoal and pyrogenic carbon measures is a promising proxy for relative fire intensity in sedimentary records and a useful tool for investigating potential anthropogenic fire regimes.


2021 ◽  
Author(s):  
Wieland Heim ◽  
Alexander Thomas ◽  
Isabelle Berner ◽  
Tim Korschefsky ◽  
Norbert Hölzel ◽  
...  

Author(s):  
Alena Giesche ◽  
Umberto Lombardo ◽  
Walter Finsinger ◽  
Heinz Veit

AbstractWe performed geochemical analyses of two lake sediment cores (1.25 and 1.5 m long) from Lago Rogaguado, which is a large (315 km2) and shallow lake in the Llanos de Moxos, Bolivian Amazon, to investigate Holocene environmental changes based on a multi-proxy dataset (XRF, density, grain size, C:N, and macrocharcoal). One of the two cores provides a history of environmental changes in the Llanos de Moxos from 8100 cal BP until present, which supplements previously published pollen and microscopic charcoal records. Our analyses indicate lake expansion at 5800 cal BP, which may relate to tectonic activity. This was followed by further increasing lake levels, peaking at approximately 1050–400 cal BP, which supports increasingly wetter conditions in the Llanos de Moxos after the mid-Holocene. A fourfold increase in macroscopic charcoal accumulation rate and a more than fivefold increase in sedimentation rates supports anthropogenic fire activity at around 1450 cal BP (500 CE), suggesting that pre-Columbian populations used fire to actively manage the landscape during a period of maximum lake levels around Lago Rogaguado. From 400–100 cal BP, higher C:N, larger grain sizes and peaks in macroscopic charcoal accumulation rates suggest increased watershed erosion associated with increased biomass burning, possibly related to intensified land use.


Fire ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 62
Author(s):  
Sébastien Caillault ◽  
Paul Laris ◽  
Cyril Fleurant ◽  
Daniel Delahaye ◽  
Aziz Ballouche

Fire regimes are important components of environmental dynamics, but our understanding of them is limited. Despite recent advances in the methodologies used to remotely sense and map fires and burned areas and new case studies that shed light on local fire use and management practices, the scientific community still has much to learn about anthropogenic fire regimes. We identify two areas for improvement: first, the fine-scale heterogeneity of fire dynamics for specific regions is often masked by global-scale approaches, and second, barriers between the disciplines focusing on fire impacts hamper the development of knowledge of the human dimensions of fire regimes. To address the “blind spot” that these limitations create, we present a simple dynamic model of fire ignition in savanna systems. The aim is to connect the local and global scales of fire regimes by focusing on human fire management (anthropogenic fire). Our dynamical model is based on a study area in Western Burkina Faso and integrates biophysical elements (climate and soil data), land cover, and fire management scenarios based on field surveys. The simulation results offer contrasting views of the impact of local fire management practices on regional fire regimes observed in savannas. Fire density and frequency are local variables that clearly change the fire regimes despite a complex and constrained biophysical system. This experience, drawing from fieldwork and modelling, may be a way to integrate some key aspects of anthropogenic fire research in savanna systems.


Sign in / Sign up

Export Citation Format

Share Document