production condition
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 28)

H-INDEX

6
(FIVE YEARS 3)

Author(s):  
A. G. Huseynov ◽  
◽  
E. A. Huseynov ◽  

The article analysis the oil and gas production condition in the Republic on basis of statistical data of many years as well as the level of investment provision. The article estimates the structure of expenses on innovative techniques, the condition of exploitation of oil and gas boreholes, the implementation of geological and technological actions, the ways of exploitation methods as well as the methods of ledge effects and influence on extra oil production. It also shows up the reserves and ways of their rational usage. Keywords: innovative activity; geological and technological actions; oil and gas; well.


2021 ◽  
Vol 948 (1) ◽  
pp. 012055
Author(s):  
A Yuliyanti ◽  
M C D Manullang ◽  
M Ilmi

Abstract Lipase is one of the industrially important enzymes, however, the production needs costly substrate. To overcome the problem, we developed an effective medium formulation to produce lipase from indigenous lipolytic mould Aspergillus aculeatus Ms.11 using spent coffee ground. We observed the effect of additional glucose and olive oil, and the influence of water content on lipase production. The experiments were done using the Solid-State Fermentation (SSF) method for 7 days. The results show that optimum lipase production on substrates with additional glucose and olive oil observed on day 4 with lipase activity of 16.296 U/mL and lipase productivity of 150.32 U/g/day. The optimum water content from the results is 50%. The highest lipase activity obtained using the water content is 291.80 U/mL, while the highest lipase productivity is 106.32 U/g/day. The results showed that water content as well as the addition of glucose and olive oil, affects lipase productivity of Aspergillus aculeatus Ms.11 on spent coffee ground. Further studies to optimise the production condition are suggested.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Wang ◽  
Bei Liao ◽  
Zhijun Li ◽  
Guangxin Liu ◽  
Liuyang Diao ◽  
...  

AbstractThe development of yeast that converts raw corn or cassava starch to ethanol without adding the exogenous α-amylase and/or glucoamylase would reduce the overall ethanol production cost. In this study, two copies of codon-optimized Saccharomycopsis fibuligera glucoamylase genes were integrated into the genome of the industrial Saccharomyces cerevisiae strain CCTCC M94055, and the resulting strain CIBTS1522 showed comparable basic growth characters with the parental strain. We systemically evaluated the fermentation performance of the CIBTS1522 strain using the raw corn or cassava starch at small and commercial-scale, and observed that a reduction of at least 40% of the dose of glucoamylase was possible when using the CIBTS1522 yeast under real ethanol production condition. Next, we measured the effect of the nitrogen source, the phosphorous source, metal ions, and industrial microbial enzymes on the strain’s cell wet weight and ethanol content, the nitrogen source and acid protease showed a positive effect on these parameters. Finally, orthogonal tests for some other factors including urea, acid protease, inoculum size, and glucoamylase addition were conducted to further optimize the ethanol production. Taken together, the CIBTS1522 strain was identified as an ideal candidate for the bioethanol industry and a better fermentation performance could be achieved by modifying the industrial culture media and condition.


2021 ◽  
Vol 27 ◽  
Author(s):  
Mehdi Alboofetileh ◽  
Ali Hamzeh ◽  
Mehdi Abdollahi

: Seaweeds have gained great attention as a vegetarian and sustainable marine source of protein which do not need irrigation, arable land and fertilization. Besides, seaweeds are considered as an untapped resource for discovering bioactive compounds with health benefits where bioactive peptides have shown outstanding potential. This review provides a detailed overview of available scientific knowledge on production methods, bioactivity and application of peptides from seaweed proteins. The emphasize is on the effects form seaweed varieties and peptide production condition on the bioactivity of the peptides and their potential health benefits. Bioactive properties of seaweed peptides including antioxidant, antihypertensive, antidiabetic, anti-inflammatory, anticancer activities and other potential health benefits have been discussed. It also covers current challenges and required future research and innovations for the successful application of seaweeds proteins as a sustainable source of bioactive peptides. Effects from seasonal variation of seaweed composition on the bioactivity of their peptides, difficulties in the extraction of proteins from seaweed complex structure, scalability and reproducibility of the developed methods for the production of bioactive peptides, the safety of the peptides are examples of highlighted challenges. Further studies on the bioavailability of the seaweed bioactive peptides and validation of the results in animal models and human trials are needed before their application as functional foods or pharmaceutical ingredients.


2021 ◽  
Vol 1016 ◽  
pp. 561-567
Author(s):  
Milad Hojati ◽  
Christian Gierl-Mayer ◽  
Herbert Danninger

In real industrial environment there is always a difference between ideal theoretical condition and real production condition which bears the risk of producing defective or low quality parts. Getting closer to this ideal situation requires more effort and investment which tends to increase the production cost. In the P/M production lines, the sintering stage is one of the most critical processes. Maintaining an open continuous sintering furnace in an ideal condition is a challenge, and this issue gets more pronounced when using alloy powder containing oxygen-sensitive elements such as Cr or Mn which provide good hardenability at low cost but on the other hand form stable oxides that weaken the sintering contacts if they are not reduced properly. In the present study, using a carbon master alloy as a sintering enhancer in the sintering process of Cr-Mo alloyed powder compacts has been investigated. For clearly depicting the effect of carbon master alloy addition on carbon dissolution and deoxidation, sintering was done in argon as inert atmosphere to avoid other reducing agents such as H2. The physical and mechanical properties of the sintered specimens were investigated, and thermal chemical analysis by DIL/MS and carbon/oxygen measurements were performed. The experiments showed that adding iron-carbon masteralloys promote the sintering processes such as reduction of oxides and carbon dissolution in the early stages of sintering, resulting in better properties after final sintering.


2020 ◽  
Vol 858 ◽  
pp. 157-162
Author(s):  
Naruebodee Srisang ◽  
Siriwan Srisang

In this study, durian seed was used to mix with poly (lactic acid), PLA for bioplates production. Durian seeds were prepared to peel off the brown skin on durian seed and then were dried. It was called brown skin durian (BSD). BSD was reduced the size below 1 mm. The mixtures between BSD and PLA were varied at 10:90, 20:80, 30:70 g/g. All mixtures were compressed into bioplates mold with varying the temperature at 90, 110, and 130 °C and the pressure at 2.0, 2.7, and 3.4 MN/m2. Bioplates sample were also investigated the properties in term of water absorption, tensile strength, and degradation. Results showed that the optimal mixture between BSD and PLA was 30:70 g/g and the suitable production condition presented the temperature and pressure at 130 °C and 3.4 MN/m2, respectively. These conditions provided low water absorption, high tensile strength and provided the proper degradation within 7 days. Hence, agricultural waste (durian seed) can be combined with PLA to produce the bio-container as bioplates which presented the potential to use in waste management.


2020 ◽  
Vol 11 (4) ◽  
pp. 1419
Author(s):  
Gustavo Antunes Maia ◽  
Nilson Brandalise

This study aims to analyze the economic and financial viability of an investment project aiming at building a new solution to provide oil to car’s engine production line. The study arises from de need of integrate a second type of oil to fill engines produced to exportation market. The objectives are essential for the company to remain in the market facing the limited resources and the strong competition. Thus, a case of study done, with typical view to data collect and analysis. The results indicate the use of feasibility technique, as NPV, IRR, Payback, LI and NUV are decisive for a good financial analysis. Adding to these techniques, a Monte Carlo method used to simulate a variable production condition.


Sign in / Sign up

Export Citation Format

Share Document