Dipole and stellarator geometries are capable of confining plasmas of arbitrary neutrality, ranging from pure electron plasmas through to quasineutral. The diocotron mode is known to be important in non-neutral plasmas and has been widely studied. However, drift mode dynamics, dominating quasineutral plasmas, has received very little by way of attention in the non-neutral context. Here, we show that non-neutral plasmas can be unstable respect to both density-gradient- and temperature-gradient-driven instabilities. A local shearless slab limit is considered for simplicity. A key feature of non-neutral plasmas is the development of strong electric fields, in this local limit of straight field line geometry, the effect of the corresponding
$\boldsymbol{E}\times \boldsymbol{B}$
drift is limited to the Doppler shift of the complex frequency
$\unicode[STIX]{x1D714}\rightarrow \unicode[STIX]{x1D714}-\unicode[STIX]{x1D714}_{E}$
. However, the breaking of the quasineutrality condition still leads to interesting dynamics in non-neutral plasmas. In this paper we address the behaviour of a number of gyrokinetic modes in electron–ion and electron–positron plasmas with arbitrary degree of neutrality.