voltage controlled oscillators
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 11 (21) ◽  
pp. 9815
Author(s):  
Vladimir Ulansky ◽  
Ahmed Raza ◽  
Denys Milke

Negative differential resistance (NDR) is inherent in many electronic devices, in which, over a specific voltage range, the current decreases with increasing voltage. Semiconductor structures with NDR have several unique properties that stimulate the search for technological and circuitry solutions in developing new semiconductor devices and circuits experiencing NDR features. This study considers two-terminal NDR electronic circuits based on multiple-output current mirrors, such as cascode, Wilson, and improved Wilson, combined with a field-effect transistor. The undoubted advantages of the proposed electronic circuits are the linearity of the current-voltage characteristics in the NDR region and the ability to regulate the value of negative resistance by changing the number of mirrored current sources. We derive equations for each proposed circuit to calculate the NDR region’s total current and differential resistance. We consider applications of NDR circuits for designing microwave single frequency oscillators and voltage-controlled oscillators. The problem of choosing the optimal oscillator topology is examined. We show that the designed oscillators based on NDR circuits with Wilson and improved Wilson multiple-output current mirrors have high efficiency and extremely low phase noise. For a single frequency oscillator consuming 33.9 mW, the phase noise is −154.6 dBc/Hz at a 100 kHz offset from a 1.310 GHz carrier. The resulting figure of merit is −221.6 dBc/Hz. The implemented oscillator prototype confirms the theoretical achievements.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6583
Author(s):  
Francisco Javier del Pino Suárez ◽  
Sunil Lalchand Khemchandani

Inductor-capacitor voltage controlled oscillators (LC-VCOs) are the most common type of oscillator used in sensors systems, such as transceivers for wireless sensor networks (WSNs), VCO-based reading circuits, VCO-based radar sensors, etc. This work presents a technique to reduce the LC-VCOs phase noise using a new current-shaping method based on a feedback injection mechanism with only two additional transistors. This technique consists of keeping the negative resistance seen from LC tank constant throughout the oscillation cycle, achieving a significant phase noise reduction with a very low area increase. To test this method an LC-VCO was designed, fabricated and measured on a wafer using 90 nm CMOS technology with 1.2 V supply voltage. The oscillator outputs were buffered using source followers to provide additional isolation from load variations and to boost the output power. The tank was tuned to 1.8 GHz, comprising two 1.15 nH with 1.5 turns inductors with a quality factor (Q) of 14, a 3.27 pF metal-oxide-metal capacitor, and two varactors. The measured phase noise was −112 dBc/Hz at 1 MHz offset. Including the pads, the chip area is 750 × 850 μm2.


Author(s):  
Vitor Fialho* ◽  

This paper presents the study and design of an Integer N synthesizer model for three LoRa ISM bands: 430 MHz 868 MHz and 915 MHz. The proposed topology is composed by two voltage controlled oscillators working in two different bands. The presented model uses the same phase-frequency detector, charge pump and loop filter. This study is focused on dynamic and steady-state analysis in order to infer the synthesizer stability and bandwidth. The performed study shows that the settling time for all bands is less than 40 µs for a bandwidth of 102 kHz.


Author(s):  
Arnaud Notué Kadjie ◽  
Hyacinthe Tchakounté ◽  
Isaac Kemajou ◽  
Paul Woafo

Abstract The equations, modelling a nonlinear resistive-capacitive-inductance shunted Josephson junction (NRCLJJ) subjected to various signal shapes of the electrical current, are simulated experimentally using the Arduino Uno-type microcontroller that takes benefit of its simplicity, lost cost, high precision, ease of implementation, and stability compared to the voltage-controlled oscillators (VCO) circuitry. Real time electrical signals are observed presenting various dynamics. Shapiro steps (SS) from the IV-characteristics are also obtained. These real electrical signals are then used to power an electromechanical pendulum in the second part of this work. Bifurcation diagram shows that the pendulum exhibits periodic and chaotic dynamics.


2021 ◽  
Vol 69 (1) ◽  
pp. 147-156
Author(s):  
Amit Jha ◽  
Pavan Yelleswarapu ◽  
Ken Liao ◽  
Geoffrey Yeap ◽  
K. O. Kenneth

2021 ◽  
Vol 253 ◽  
pp. 09007
Author(s):  
K. Coulié ◽  
W. Rahajandraibe ◽  
L. Ottaviani

A particle detection chain based on a CMOS SOI VCO circuit associated to a matrix of detection is presented. The solution is optimized for the recognition and tracking of various particles. Two ions are considered: an alpha and an aluminum. These two ions were chosen because there are very different in terms of energy and LET variations.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4612 ◽  
Author(s):  
Danilo Monda ◽  
Gabriele Ciarpi ◽  
Sergio Saponara

This work presented a comparison between two Voltage Controlled Oscillators (VCOs) designed in 65 nm CMOS technology. The first architecture based on a Ring Oscillator (RO) was designed using three Current Mode Logic (CML) stages connected in a loop, while the second one was based on an LC-tank resonator. This analysis aimed to choose a VCO architecture able to be integrated into a rad-hard Phase Locked Loop. It had to meet the requirements of the SpaceFibre protocol, which supports frequencies up to 6.25 GHz, for space applications. The full custom schematic and layout designs are shown, and Single Event Effect simulations results, performed with a double exponential current pulses generator, are presented in detail for both VCOs. Although the RO-VCO performances in terms of technology scaling and high-integration density were attractive, the simulations on the process variations demonstrated its inability to generate the target frequency in harsh operating conditions. Instead, the LC-VCO highlighted a lower influence through Process-Voltage-Temperature simulations on the oscillation frequency. Both architectures were biased with a supply voltage of 1.2 V. The achieved results for the second architecture analyzed were attractive to address the requirements of the new SpaceFibre aerospace standard.


Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emad Ebrahimi

Purpose Multiphase and quadrature voltage-controlled oscillators (QVCOs) play key roles in modern communication systems and their phase noise performance affects the performance of the overall system. Different studies are devoted to efficient quadrature signals generation. This paper aims to present a new low-phase noise superharmonic injection-locked QVCO. Design/methodology/approach The proposed QVCO is comprised of two identical inductor-capacitor circuit (LC)-voltage-controlled oscillators (VCOs) in which second harmonics, with 180° phase shift, are injected from one core VCO to the gate of tail current source of the other VCO via a coupling capacitor. Using second harmonics with high amplitude will switch the tail from the inversion to the accumulation, and therefore, flicker noise is reduced. Also, because of the use of lossless and noiseless coupling elements, that is, coupling capacitors, and also because of the existence of an inherent high-pass filter, the proposed LC-QVCO has a good phase noise performance. Findings The introduced technique is designed and simulated in a commercial 0.18 µm radio frequency complementary metal oxide semiconductor (RF-CMOS) technology and 10 dB improvement of close-in phase noise is achieved (compared to the conventional method). Simulation results show that the phase noise of the proposed QVCO is −130.3 dBc/Hz at 3 MHz offset from 5.76 GHz center frequency, while the total direct current (DC) current drawn from a 0.9-V power supply is 4.25 mA (figure of merit = −190.2 dBc). Monte Carlo simulation results show that the figure of merit of the circuit has a Gaussian distribution with mean value and standard deviation of −189.97 dBc and 0.183, respectively. Originality/value This technique provides a new simple but efficient superharmonic coupling and noise shaping method that reduces close-in phase noise of superharmonic multiphase VCOs by switching of tail transistors with 2 ω0 (second harmonic of oscillation frequency). No extra devices such as area-consuming transformer or additional power-hungry oscillator are used for coupling.


Sign in / Sign up

Export Citation Format

Share Document