dna junctions
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 16)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Viacheslav V.V. Severov ◽  
Vladimir V.B. Tsvetkov ◽  
Nikolay N.A. Barinov ◽  
Vladislav V.V. Babenko ◽  
Dmitry D.V. Klinov ◽  
...  

We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.


2021 ◽  
Author(s):  
Dylan Heussman ◽  
Justin Kittell ◽  
Peter H. von Hippel ◽  
Andrew H. Marcus

DNA replication, and the related processes of genome expression, require binding, assembly, and function of protein complexes at and near single-stranded (ss) -- double-stranded (ds) DNA junctions. These central protein-DNA interactions are likely influenced by thermally induced conformational fluctuations of the DNA scaffold across an unknown distribution of functionally relevant states to provide regulatory proteins access to properly conformed DNA binding sites. Thus, characterizing the nature of conformational fluctuations and the associated structural disorder at ss-dsDNA junctions is likely critical for understanding the molecular mechanisms of these central biological processes. Here we describe spectroscopic studies of model ss-dsDNA fork constructs that contain dimers of "internally labeled" cyanine (iCy3) chromophore probes that have been rigidly inserted within the sugar-phosphate backbones of the DNA strands. Our combined analyses of absorbance, circular dichroism (CD) and two-dimensional fluorescence spectroscopy (2DFS) permit us to characterize the local conformational parameters and conformational distributions. We find that the DNA sugar-phosphate backbones undergo abrupt successive changes in their local conformations -- initially from a right-handed and ordered DNA state to a disordered splayed-open structure and then to a disordered left-handed conformation -- as the dimer probes are moved across the ss-dsDNA junction. Our results suggest that the sugar-phosphate backbones at and near ss-dsDNA junctions adopt specific position-dependent local conformations and exhibit varying extents of conformational disorder that deviate widely from the Watson-Crick structure. We suggest that some of these conformations are likely to function as secondary-structure motifs for interaction with protein complexes that bind to and assemble at these sites.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009735
Author(s):  
Weier Guo ◽  
Luca Comai ◽  
Isabelle M. Henry

Chromoanagenesis is a genomic catastrophe that results in chromosomal shattering and reassembly. These extreme single chromosome events were first identified in cancer, and have since been observed in other systems, but have so far only been formally documented in plants in the context of haploid induction crosses. The frequency, origins, consequences, and evolutionary impact of such major chromosomal remodeling in other situations remain obscure. Here, we demonstrate the occurrence of chromoanagenesis in poplar (Populus sp.) trees produced from gamma-irradiated pollen. Specifically, in this population of siblings carrying indel mutations, two individuals exhibited highly frequent copy number variation (CNV) clustered on a single chromosome, one of the hallmarks of chromoanagenesis. Using short-read sequencing, we confirmed the presence of clustered segmental rearrangement. Independently, we identified and validated novel DNA junctions and confirmed that they were clustered and corresponded to these rearrangements. Our reconstruction of the novel sequences suggests that the chromosomal segments have reorganized randomly to produce a novel rearranged chromosome but that two different mechanisms might be at play. Our results indicate that gamma irradiation can trigger chromoanagenesis, suggesting that this may also occur when natural or induced mutagens cause DNA breaks. We further demonstrate that such events can be tolerated in poplar, and even replicated clonally, providing an attractive system for more in-depth investigations of their consequences.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252390
Author(s):  
Tommaso Grassi ◽  
Faye R. Harris ◽  
James B. Smadbeck ◽  
Stephen J. Murphy ◽  
Matthew S. Block ◽  
...  

Introduction There are no reliable blood biomarkers for monitoring endometrial cancer patients in the current clinical practice. Circulating tumor DNA (ctDNA) is emerging as a promising non-invasive method to measure tumor burden, define prognosis and monitor disease status in many solid cancers. In this pilot study, we investigated if unique tumor-specific DNA junctions can be used to detect ctDNA levels in patients with endometrial cancer. Methods Chromosomal rearrangements in primary tumors of eleven patients with high-grade or advanced stage endometrial cancer were determined by whole-genome Mate-Pair sequencing. Identified unique tumor-specific junctions were evaluated in pre- and six-week post-surgery patient plasma using individualized quantitative polymerase chain reaction (qPCR) assays. The relationship between clinicopathological features and detection of ctDNA was investigated. Results CtDNA was detected in 60% (6/10) of cases pre-surgery and in 27% (3/11) post-surgery. The detection of ctDNA pre-surgery was consistent with clinical indicators of aggressive disease such as advanced stage (80% - 4/5), lymphatic spread of disease (100% - 3/3), serous histology (80% - 4/5), deep myometrial invasion (100% - 3/3), lympho-vascular space invasion (75% - 3/4). All patients in which ctDNA was detected post-surgically had type II endometrial cancer. Discussion This pilot study demonstrates the feasibility of using personalized tumor-specific junction panels for detecting ctDNA in the plasma of endometrial cancer patients. Larger studies and longer follow-up are needed to validate the potential association between pre-surgical ctDNA detection and the presence of cancers with aggressive pathologic tumor characteristics or advanced stage observed in this study.


2021 ◽  
Author(s):  
Robin Öz ◽  
Jing L Wang ◽  
Raphael Guerois ◽  
Gaurav Goyal ◽  
Sriram KK ◽  
...  

Abstract We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.


2021 ◽  
Author(s):  
Michael Taschner ◽  
Jérôme Basquin ◽  
Barbara Steigenberger ◽  
Ingmar Schaefer ◽  
Young-Min Soh ◽  
...  

AbstractEukaryotic cells employ three SMC complexes to control DNA folding and topology. The Smc5/6 complex plays roles in DNA repair and in preventing the accumulation of deleterious DNA junctions. To elucidate how specific features of Smc5/6 govern these functions, we reconstituted the yeast holo-complex. We found that the Nse5/6 sub-complex strongly inhibited the Smc5/6 ATPase by preventing productive ATP binding. This inhibition was relieved by plasmid DNA binding but not by short linear DNA, while opposing effects were observed without Nse5/6. We uncovered two binding sites for Nse5/6 on Smc5/6, based on an Nse5/6 crystal structure and cross-linking mass spectrometry data. One binding site is located at the Smc5/6 arms and one at the heads, the latter likely exerting inhibitory effects on ATP hydrolysis. Cysteine cross-linking demonstrated that the interaction with Nse5/6 anchored the ATPase domains in a non-productive state, which was destabilized by ATP and DNA. Under similar conditions, the Nse4/3/1 module detached from the ATPase. Altogether, we show how DNA substrate selection is modulated by direct inhibition of the Smc5/6 ATPase by Nse5/6.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Parker J. Nichols ◽  
Shaun Bevers ◽  
Morkos Henen ◽  
Jeffrey S. Kieft ◽  
Quentin Vicens ◽  
...  

AbstractAdenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted — and in some cases even shown — to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1.


2021 ◽  
Author(s):  
Joanna Zell ◽  
Francesco Rota Sperti ◽  
Sébastien Britton ◽  
David Monchaud

Alternative DNA structures (including G-quadruplexes and DNA junctions) represent promising targets for combinatorial chemotherapeutic treatments aiming at fostering genomic instability and impeding DNA repair.


2020 ◽  
Author(s):  
Junfang Song ◽  
Alasdair D. J. Freeman ◽  
Axel Knebel ◽  
Anton Gartner ◽  
David M. J. Lilley

ABSTRACTAll physical connections between sister chromatids must be broken before cells can divide, and eukaryotic cells have evolved multiple ways in which to process branchpoints connecting DNA molecules separated both spatially and temporally. A single DNA link between chromatids has the potential to disrupt cell cycle progression and genome integrity, so it is highly likely that cells require a nuclease that can process remaining unresolved and hemi-resolved DNA junctions and other branched species at the very late stages of mitosis. We argue that ANKLE1 probably serves this function in human cells (LEM-3 in C. elegans). LEM-3 has previously been shown to be located at the cell mid-body, and we show here that human ANKLE1 is a nuclease that cleaves a range of branched DNA species. It thus has the substrate selectivity consistent with an enzyme required to process a variety of unresolved and hemi-resolved branchpoints in DNA. Our results imply that ANKLE1 acts as a catch-all enzyme of last resort that allows faithful chromosome segregation and cell division to occur.


Sign in / Sign up

Export Citation Format

Share Document