AbstractShort-term spin-up for strong storms is a known difficulty for the operational Hurricane Weather Research and Forecasting (HWRF) model after assimilating high-resolution inner-core observations. Our previous study associated this short-term intensity prediction issue with the incompatibility between the HWRF model and the data assimilation (DA) analysis. While improving physics and resolution of the model was found helpful, this study focuses on further improving the intensity predictions through the four-dimensional incremental analysis update (4DIAU).In the traditional 4DIAU, increments are pre-determined by subtracting background forecasts from analyses. Such pre-determined increments implicitly require linear evolution assumption during the update, which are hardly valid for rapid-evolving hurricanes. To confirm the hypothesis, a corresponding 4D analysis nudging (4DAN) method which uses online increments is first compared with the 4DIAU in an oscillation model. Then, variants of 4DIAU are proposed to improve its application for nonlinear systems. Next, 4DIAU, 4DAN and their proposed improvements are implemented into the HWRF 4DEnVar DA system and are investigated with hurricane Patricia (2015).Results from both oscillation model and HWRF model show that: 1. the pre-determined increments in 4DIAU can be detrimental when there are discrepancies between the updated and background forecasts during a nonlinear evolution. 2. 4DAN can improve the performance of incremental update upon 4DIAU, but its improvements are limited by the over-filtering. 3. Relocating initial background before the incremental update can improve the corresponding traditional methods. 4. the feature-relative 4DIAU method improves the incremental update the most and produces the best track and intensity predictions for Patricia among all experiments.