molecular ruler
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Muaz Rushdi ◽  
Victor Pan ◽  
Kaitao Li ◽  
Stefano Travaglino ◽  
Hyun-Kyu Choi ◽  
...  

Abstract Antigen recognition of CD4+ T cells by the T cell receptor (TCR) can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Using two-dimensional (2D) mechanical-based assays, we determined a CD4–pMHC interaction to have 3-4 logs lower affinity than cognate TCR–pMHC interactions, and to be susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-prebound pMHC at 5-6 logs higher affinity, forming TCR–pMHC–CD4 trimolecular bonds that are prolonged by force (catch bond) and modulated by protein mobility on the cell membrane, indicating profound TCR–CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 indicates 7-nm proximity enables optimal trimolecular bond formation with pMHC. Our results reveal how CD4 augments TCR antigen recognition.


2021 ◽  
Author(s):  
Muaz Nik Rushdi ◽  
Victor Pan ◽  
Kaitao Li ◽  
Stefano Travaglino ◽  
Hyun-Kyu Choi ◽  
...  

Antigen recognition of CD4+ T cells by the T cell receptor (TCR) can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Using two-dimensional (2D) mechanical-based assays, we determined a CD4-pMHC interaction to have 3-4 logs lower affinity than cognate TCR-pMHC interactions, and to be susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-prebound pMHC at 5-6 logs higher affinity, forming TCR-pMHC-CD4 trimolecular bonds that are prolonged by force (catch bond) and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 indicates 7-nm proximity enables optimal trimolecular bond formation with pMHC. Our results reveal how CD4 augments TCR antigen recognition.


2021 ◽  
pp. 133666
Author(s):  
Ning Feng ◽  
Lei Zhang ◽  
Jingjing Shen ◽  
Yanling Hu ◽  
Weibing Wu ◽  
...  

2021 ◽  
Vol 7 (42) ◽  
Author(s):  
Itxaso Anso ◽  
Luis G. M. Basso ◽  
Lei Wang ◽  
Alberto Marina ◽  
Edgar D. Páez-Pérez ◽  
...  

2021 ◽  
Author(s):  
Zhexin Wang ◽  
Michael Grange ◽  
Sabrina Pospich ◽  
Thorsten Wagner ◽  
Ay Lin Kho ◽  
...  

AbstractNebulin is a major structural protein of skeletal sarcomeres and is essential for proper assembly and contraction of skeletal muscle1. It stabilises and regulates the length of thin filaments,2 but the structural mechanism remains nebulous. Using electron cryotomography and sub-tomogram averaging, we present the first structure of native nebulin bound to thin filaments within the A-band and I-band of intact sarcomeres. This in-situ reconstruction reveals unprecedented detail of interaction at pseudo-atomic resolution between nebulin and actin, providing the basis for understanding the structural and regulatory roles of nebulin. The position of nebulin on the thin filament indicates that there is no contact to tropomyosin or myosin, but an unexpected interaction with a troponin-T linker, possibly through two binding motifs on nebulin. In addition, our structure of myosin bound to the thin filaments reveals different conformations of the neck domain, both within the same sarcomere and when compared to purified structures, highlighting an inherent structural variability in muscle. We provide a complete description of cross-bridge formation on fully native, nebulin-containing thin filaments at near-atomic scale. Our structures establish the molecular basis for the role of nebulin as a thin filament “molecular ruler” and the impact of nemaline myopathies mutations that will aid future development of therapies.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009621
Author(s):  
Daisuke Nakane ◽  
Kohki Murata ◽  
Tsuyoshi Kenri ◽  
Keigo Shibayama ◽  
Takayuki Nishizaka

Length control is a fundamental requirement for molecular architecture. Even small wall-less bacteria have specially developed macro-molecular structures to support their survival. Mycoplasma pneumoniae, a human pathogen, forms a polar extension called an attachment organelle, which mediates cell division, cytadherence, and cell movement at host cell surface. This characteristic ultrastructure has a constant size of 250–300 nm, but its design principle remains unclear. In this study, we constructed several mutants by genetic manipulation to increase or decrease coiled-coil regions of HMW2, a major component protein of 200 kDa aligned in parallel along the cell axis. HMW2-engineered mutants produced both long and short attachment organelles, which we quantified by transmission electron microscopy and fluorescent microscopy with nano-meter precision. This simple design of HMW2 acting as a molecular ruler for the attachment organelle should provide an insight into bacterial cellular organization and its function for their parasitic lifestyles.


2021 ◽  
Author(s):  
Stephanie Willing ◽  
Olaf Schneewind ◽  
Dominique Missiakas

LyrA (SpdC), a homologue of eukaryotic CAAX proteases that act on prenylated substrates, has been implicated in the assembly of several pathways of the envelope of Staphylococcus aureus. We described earlier the Lysostaphin resistance (Lyr) and Staphylococcal protein A display (Spd) phenotypes associated with loss of the lyrA (spdC) gene. However, a direct contribution to the assembly of pentaglycine crossbridges, the target of lysostaphin cleavage in S. aureus peptidoglycan, or of Staphylococcal protein A attachment to peptidoglycan could not be attributed directly to LyrA (SpdC). These two processes are catalyzed by the Fem factors and Sortase A, respectively. To gain insight into the function of LyrA (SpdC), here we use affinity chromatography and LC-MS/MS analysis and report that LyrA interacts with SagB. SagB cleaves glycan strands of peptidoglycan to achieve physiological length. Similar to sagB peptidoglycan, lyrA peptidoglycan contains extended glycan strands. Purified lyrA peptidoglycan can still be cleaved to physiological length by SagB in vitro. LyrA does not modify or cleave peptidoglycan, it also does not modify or stabilize SagB. The membrane bound domain of LyrA is sufficient to support SagB activity but predicted ‘CAAX enzyme’ catalytic residues in this domain are dispensable. We speculate that LyrA exerts its effect on bacterial prenyl substrates, specifically undecaprenol-bound peptidoglycan substrates of SagB, to help control glycan length. Such an activity also explains the Lyr and Spd phenotypes observed earlier. IMPORTANCE Peptidoglycan is assembled on the trans side of the plasma membrane from lipid II precursors into glycan chains that are crosslinked at stem peptides. In S. aureus, SagB, a membrane-associated N-acetylglucosaminidase, cleaves polymerized glycan chains to their physiological length. Deletion of sagB is associated with longer glycan strands in peptidoglycan, altered protein trafficking and secretion in the envelope, and aberrant excretion of cytosolic proteins. It is not clear whether SagB, with its single transmembrane segment, serves as the molecular ruler of glycan chains or whether other factors modulate its activity. Here, we show that LyrA (SpdC), a protein of the CAAX type II prenyl endopeptidase family, modulates SagB activity via interaction though its transmembrane domain.


Sign in / Sign up

Export Citation Format

Share Document