isotope discrimination
Recently Published Documents


TOTAL DOCUMENTS

631
(FIVE YEARS 41)

H-INDEX

72
(FIVE YEARS 4)

2022 ◽  
Vol 19 (1) ◽  
pp. 1-27
Author(s):  
Roberto Velázquez-Ochoa ◽  
María Julia Ochoa-Izaguirre ◽  
Martín Federico Soto-Jiménez

Abstract. The isotopic composition of carbon in macroalgae (δ13C) is highly variable, and its prediction is complex concerning terrestrial plants. The determinants of δ13C macroalgal variations were analyzed in a large stock of specimens that vary in taxa and morphology and were collected in shallow marine habitats in the Gulf of California (GC) with distinctive environmental conditions. A large δ13C variability (−34.6 ‰ to −2.2 ‰) was observed. Life-forms (taxonomy 57 %, morphology and structural organization 34 %) explain the variability related to carbon use physiology. Environmental conditions influenced the δ13C macroalgal values but did not change the physiology, which is most likely inherently species-specific. Values of δ13C were used as indicators of the presence or absence of carbon concentrating mechanisms (CCMs) and as integrative values of the isotope discrimination during carbon assimilation in the life cycle macroalgae. Based on δ13C signals, macroalgae were classified in three strategies relative to the capacity of CCM: (1) HCO3- uptake (δ13C > −10 ‰), (2) using a mix of CO2 and HCO3- uptake (-10<δ13C > −30 ‰), and (3) CO2 diffusive entry (δ13C < −30 ‰). Most species showed a δ13C that indicates a CCM using a mix of CO2 and HCO3- uptake. HCO3- uptake is also widespread among GC macroalgae, with many Ochrophyta species. Few species belonging to Rhodophyta relied on CO2 diffusive entry exclusively, while calcifying macroalgae species using HCO3- included only Amphiroa and Jania. The isotopic signature evidenced the activity of CCM, but it was inconclusive about the preferential uptake of HCO3- and CO2 in photosynthesis and the CCM type expressed in macroalgae. In the study of carbon use strategies, diverse, species-specific, and complementary techniques to the isotopic tools are required.


Ursus ◽  
2021 ◽  
Vol 2021 (32e22) ◽  
Author(s):  
Jernej Javornik ◽  
Martina Burnik Šturm ◽  
Klemen Jerina

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1561
Author(s):  
Aalap Dixit ◽  
Thomas Kolb ◽  
Owen Burney ◽  
Karen Mock ◽  
Kevin Grady

We investigated early survival, growth, and carbon isotope discrimination of ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) seedlings from different provenances using common gardens across an elevational gradient in order to examine the potential for adaptation to extreme environments and constraints to artificial regeneration. Twenty-one provenances from a range of elevations across Arizona and New Mexico were planted in three common gardens: a high-elevation meadow in aspen-mixed conifer forest, a mid-elevation ponderosa pine forest, and a low-elevation pinyon juniper woodland. Two years after planting in 2018, survival was highest at the mid-elevation site (54%), low at the high-elevation site (1.5%), and 0% at the low-elevation site. At the hot and dry low-elevation site, provenances from low-elevations survived longer than provenances from mid- and high-elevations, which suggests greater drought tolerance of low-elevation provenances. Mortality agents changed from abiotic (drought) to biotic (herbivory) with an increase in elevation across sites. High mortality of seedlings planted at high-elevation sites from biotic agents, such as rodents, may challenge efforts to establish ponderosa pine in assisted migration projects. Seedlings had significantly higher growth rate and carbon isotope discrimination (∆13C) at the mid-elevation site than the high-elevation site. Provenances differed significantly in diameter, and ∆13C, but not in height growth rate for the first year after planting. Provenance variation in ∆13C suggests genetic variation in water use efficiency that may be useful for future evaluation of southwestern ponderosa pine seed sources for reforestation.


Author(s):  
Kyle A. Cutting ◽  
Jay J. Rotella ◽  
Emma Grusing ◽  
James A. Waxe ◽  
Erika Nunlist ◽  
...  

2021 ◽  
Author(s):  
Aliénor Lavergne ◽  
Deborah Hemming ◽  
Iain Colin Prentice ◽  
Rossella Guerrieri ◽  
Rebecca J. Oliver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document