covalent inhibitors
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 243)

H-INDEX

37
(FIVE YEARS 9)

2022 ◽  
Vol 147 ◽  
pp. 112617
Author(s):  
Qiangsheng Zhang ◽  
Xinyi Chen ◽  
Xi Hu ◽  
Xianjie Duan ◽  
Guoquan Wan ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Marc Cucurull ◽  
Lucia Notario ◽  
Montse Sanchez-Cespedes ◽  
Cinta Hierro ◽  
Anna Estival ◽  
...  

Approximately 20% of lung adenocarcinomas harbor KRAS mutations, an oncogene that drives tumorigenesis and has the ability to alter the immune system and the tumor immune microenvironment. While KRAS was considered “undruggable” for decades, specific KRAS G12C covalent inhibitors have recently emerged, although their promising results are limited to a subset of patients. Several other drugs targeting KRAS activation and downstream signaling pathways are currently under investigation in early-phase clinical trials. In addition, KRAS mutations can co-exist with other mutations in significant genes in cancer (e.g., STK11 and KEAP1) which induces tumor heterogeneity and promotes different responses to therapies. This review describes the molecular characterization of KRAS mutant lung cancers from a biologic perspective to its clinical implications. We aim to summarize the tumor heterogeneity of KRAS mutant lung cancers and its immune-regulatory role, to report the efficacy achieved with current immunotherapies, and to overview the therapeutic approaches targeting KRAS mutations besides KRAS G12C inhibitors.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Lingzhi Qu ◽  
Xiaojuan Chen ◽  
Hudie Wei ◽  
Ming Guo ◽  
Shuyan Dai ◽  
...  

AbstractFIIN-2, TAS-120 (Futibatinib) and PRN1371 are highly potent pan-FGFR covalent inhibitors targeting the p-loop cysteine of FGFR proteins, of which TAS-120 and PRN1371 are currently in clinical trials. It is critical to analyze their target selectivity and their abilities to overcome gatekeeper mutations. In this study, we demonstrate that FIIN-2 and TAS-120 form covalent adducts with SRC, while PRN1371 does not. FIIN-2 and TAS-120 inhibit SRC and YES activities, while PRN1371 does not. Moreover, FIIN-2, TAS-120 and PRN1371 exhibit different potencies against different FGFR gatekeeper mutants. In addition, the co-crystal structures of SRC/FIIN-2, SRC/TAS-120 and FGFR4/PRN1371 complexes reveal structural basis for kinase targeting and gatekeeper mutations. Taken together, our study not only provides insight into the potency and selectivity of covalent pan-FGFR inhibitors, but also sheds light on the development of next-generation FGFR covalent inhibitors with high potency, high selectivity, and stronger ability to overcome gatekeeper mutations.


Author(s):  
Ke Sherry Li ◽  
John G. Quinn ◽  
Matthew J. Saabye ◽  
Jesus F. Salcido Guerrero ◽  
Jim Nonomiya ◽  
...  

2022 ◽  
pp. 47-73
Author(s):  
Péter Ábrányi-Balogh ◽  
György Miklós Keserű

2021 ◽  
Vol 23 (1) ◽  
pp. 259
Author(s):  
Guillem Macip ◽  
Pol Garcia-Segura ◽  
Júlia Mestres-Truyol ◽  
Bryan Saldivar-Espinoza ◽  
Gerard Pujadas ◽  
...  

In this review, we collected 1765 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M-pro inhibitors from the bibliography and other sources, such as the COVID Moonshot project and the ChEMBL database. This set of inhibitors includes only those compounds whose inhibitory capacity, mainly expressed as the half-maximal inhibitory concentration (IC50) value, against M-pro from SARS-CoV-2 has been determined. Several covalent warheads are used to treat covalent and non-covalent inhibitors separately. Chemical space, the variation of the IC50 inhibitory activity when measured by different methods or laboratories, and the influence of 1,4-dithiothreitol (DTT) are discussed. When available, we have collected the values of inhibition of viral replication measured with a cellular antiviral assay and expressed as half maximal effective concentration (EC50) values, and their possible relationship to inhibitory potency against M-pro is analyzed. Finally, the most potent covalent and non-covalent inhibitors that simultaneously inhibit the SARS-CoV-2 M-pro and the virus replication in vitro are discussed.


Author(s):  
Jonathan M.L. Ostrem ◽  
Kevan M. Shokat

KRAS is the most frequently mutated oncogene in cancer. Following numerous attempts to inhibit KRAS spanning multiple decades, recent efforts aimed at covalently targeting the mutant cysteine of KRAS G12C have yielded very encouraging results. Indeed, one such molecule, sotorasib, has already received accelerated US Food and Drug Administration approval with phase III clinical trials currently underway. A second molecule, adagrasib, has also progressed to phase III, and several others have entered early-phase clinical trials. The success of these efforts has inspired an array of novel approaches targeting KRAS, with some reporting extension to the two most common oncogenic KRAS mutations, G12V and G12D. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Tadeusz Robak ◽  
Magda Witkowska ◽  
Piotr Smolewski

The use of the Bruton’s tyrosine kinase (BTK) inhibitors has changed the management and clinical history of patients with chronic lymphocytic leukemia (CLL). BTK is a critical molecule that interconnects B-cell antigen receptor (BCR) signaling. BTKIs are classified into two categories: irreversible (covalent) inhibitors and reversible (non-covalent) inhibitors. Ibrutinib is the first irreversible BTK inhibitor approved by the U.S. Food and Drug Administration in 2013 as a breakthrough therapy in CLL patients. Subsequently, several studies evaluated the efficacy and safety of new agents with reduced toxicity when compared with ibrutinib. Two other irreversible, second-generation BTK inhibitors, acalabrutinib and zanubrutinib, were developed to reduce ibrutinib-mediated adverse effects. Additionally, new reversible BTK inhibitors are currently under development in an early phase studies to improve their activity and to diminish adverse effects. This review summarizes the pharmacology, clinical efficacy, safety, dosing, drug-drug interactions associated with the treatment of CLL with BTK inhibitors, and examines its further implications.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1557
Author(s):  
Zoran Radić

The influence of ligand binding to human, mouse and Torpedo californica acetylcholinesterase (EC 3.1.1.7; AChE) backbone structures is analyzed in a pairwise fashion by comparison with X-ray structures of unliganded AChEs. Both complexes with reversible ligands (substrates and inhibitors) as well as covalently interacting ligands leading to the formation of covalent AChE conjugates of tetrahedral and of trigonal-planar geometries are considered. The acyl pocket loop (AP loop) in the AChE backbone is recognized as the conformationally most adaptive, but not necessarily sterically exclusive, structural element. Conformational changes of the centrally located AP loop coincide with shifts in C-terminal α-helical positions, revealing interacting components for a potential allosteric interaction within the AChE backbone. The stabilizing power of the aromatic choline binding site, with the potential to attract and pull fitting entities covalently tethered to the active Ser, is recognized. Consequently, the pull can promote catalytic reactions or relieve steric pressure within the impacted space of the AChE active center gorge. These dynamic properties of the AChE backbone inferred from the analysis of static X-ray structures contribute towards a better understanding of the molecular template important in the structure-based design of therapeutically active molecules, including AChE inhibitors as well as reactivators of conjugated, inactive AChE.


2021 ◽  
Author(s):  
Ching-Chih Lin ◽  
Sin Yong Hoo ◽  
Li-Ting Ma ◽  
Chih Lin ◽  
Kai-Fa Huang ◽  
...  

Abstract Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for the development of antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document