tata box binding protein
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 29)

H-INDEX

49
(FIVE YEARS 3)

2021 ◽  
pp. 1-19
Author(s):  
Nirupma Singh ◽  
Sneha Rai ◽  
Rakesh Bhatnagar ◽  
Sonika Bhatnagar

Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific (cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor, EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system level understanding of cardiac damage in microbe induced CVDs.


Author(s):  
Yuxin Song ◽  
Hui Zhang ◽  
Zhengdong Song ◽  
Yang Yang ◽  
Suifeng Zhang ◽  
...  

Background: Long non-coding RNAs (lncRNAs) have been confirmed as important regulators during osteogenic differentiation. Previous researches have disclosed that growth arrest-specific transcript 5 ( GAS5 ) can promote the osteogenic differentiation of human bone marrow mesenchyml stem cells (hBMSCs), but the underlying regulatory mechanism of GAS5 during the osteogenic differentiation of hBMSCs is unclear. Methods: Osteogenic differentiation was induced in hBMSCs by using osteogenic medium (OM). Gene expression was assessed by RT-qPCR or western blot assays as needed. ALP activity, ALP staining and ARS staining assays were performed to evaluate the impact of GAS5 , microRNA-382-3p (miR-382-3p) and TATA-box binding protein associated factor 1 ( TAF1 ) on osteogenic differentiation in vitro . The interaction among GAS5 , miR-382-3p and TAF1 was determined by RIP, ChIP and luciferase reporter assays. Results: Expression of GAS5 (transcript variant 2) was down-regulated during the osteogenic differentiation of hBMSCs and its overexpression retarded the osteogenic differentiation of hBMSCs. GAS5 inhibited miR-382-3p through targeting RNA-directed microRNA degradation (TDMD). MiR-382-3p down-regulation partially offset the promoted osteogenic differentiation of hBMSCs upon GAS5 silencing. TAF1 negatively modulated osteogenic differentiation and it activated GAS5 transcription so as to form a positive GAS5 /miR-382-3p/ TAF1 feedback loop in hBMSCs. Conclusion: This research was the first to reveal that the GAS5 /miR-382-3p/ TAF1 feedback loop inhibited the osteogenic differentiation of hBMSCs, which provided new clues for exploring the mechanism of osteogenic differentiation and disclosed the potential of GAS5 as a promising target during osteogenic differentiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Wrzesińska ◽  
Karolina Kościelniak ◽  
Patryk Frąckowiak ◽  
Tadeusz Praczyk ◽  
Aleksandra Obrępalska-Stęplowska

AbstractWeed resistance to herbicides constitutes a serious problem to world crop production. One of the weeds that are significantly threatening the crops’ yield and quality is Apera spica-venti. The target-site resistance (TSR) mechanism of A. spica-venti has been widely studied, though, little is known about its non-target-site resistance (NTSR) mechanisms at the molecular level. Molecular examination of NTSR is, to a great extent, based on the expression profiles of selected genes, e.g. those participating in detoxification. However, to obtain reliable results of gene expression analysis, the use of a normalizer is required. The aim of this study was to select the best reference genes in A. spica-venti plants of both populations, susceptible and resistant to ALS inhibitor, under treatment with herbicide. Eleven housekeeping genes were chosen for their expression stability assessment. The efficiency correction of raw quantification cycles (Cq) was included in the gene expression stability analyses, which resulted in indicating the TATA-box binding protein (TBP), glyceraldehyde-3-phosphate dehydrogenase, cytosolic (GAPC), and peptidyl-prolyl cis–trans isomerase CYP28 (CYP28) genes as the most stably expressed reference genes. The obtained results are of vital importance for future studies on the expression of genes associated with the non-target-site resistance mechanisms in the A. spica-venti populations susceptible and resistant to herbicides.


2021 ◽  
Vol 10 (16) ◽  
pp. 3722
Author(s):  
Yen-Fu Chen ◽  
Ao-Ho Hsieh ◽  
Lian-Chin Wang ◽  
Kuang-Hui Yu ◽  
Chang-Fu Kuo

Background: Evidence indicates a causal link between cytomegalovirus (CMV) infection and the triggering of systemic lupus erythematosus (SLE). Animal studies have revealed that CMV phosphoprotein 65 (pp65) induces autoantibodies against nuclear materials and causes the autoantibody attack of glomeruli. IgG eluted from the glomeruli of CMVpp65-peptide-immunized mice exhibited cross-reactivity against dsDNA and TATA-box-binding protein associated factor 9 (TAF9). Whether the elevation of anti-TAF9 IgG is associated with anti-CMV reactivity in human lupus remains unclear. Methods: The sera from patients with rheumatic diseases, including ankylosing spondylitis (AS), gout, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Sjögren syndrome (SS) were examined using ELISA for antibodies of CMV, CMVpp65, and TAF9. Results: In total, 83.8% of the rheumatic patients had acquired CMV infections. The SLE patients had a high prevalence of anti-CMV IgM. The highest seropositivity rates for anti-HCMVpp65 and anti-TAF9 IgG were observed in the SLE patients. Purified anti-CMVpp65 IgG from CMVpp65/TAF9 dual-positive SLE sera reacted to both TAF9 and dsDNA. An increased prevalence of proteinuria and low hemoglobin levels were found in CMV IgG- and CMVpp65 IgG-positive SLE patients. Conclusions: This observation suggests that immunity to CMVpp65 is associated with cross-reactivity with TAF9 and dsDNA and that it is involved in the development of clinical manifestations in SLE.


2021 ◽  
Vol 118 (30) ◽  
pp. e2108859118
Author(s):  
Haibo Wang ◽  
Le Xiong ◽  
Patrick Cramer

The TATA box-binding protein (TBP) is highly conserved throughout eukaryotes and plays a central role in the assembly of the transcription preinitiation complex (PIC) at gene promoters. TBP binds and bends DNA, and directs adjacent binding of the transcription factors TFIIA and TFIIB for PIC assembly. Here, we show that yeast TBP can bind to a nucleosome containing the Widom-601 sequence and that TBP–nucleosome binding is stabilized by TFIIA. We determine three cryo-electron microscopy (cryo-EM) structures of TBP–nucleosome complexes, two of them containing also TFIIA. TBP can bind to superhelical location (SHL) –6, which contains a TATA-like sequence, but also to SHL +2, which is GC-rich. Whereas binding to SHL –6 can occur in the absence of TFIIA, binding to SHL +2 is only observed in the presence of TFIIA and goes along with detachment of upstream terminal DNA from the histone octamer. TBP–nucleosome complexes are sterically incompatible with PIC assembly, explaining why a promoter nucleosome generally impairs transcription and must be moved before initiation can occur.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1093
Author(s):  
Uta Flucke ◽  
Max M. van Noesel ◽  
Vasiliki Siozopoulou ◽  
David Creytens ◽  
Bastiaan B. J. Tops ◽  
...  

EWSR1 belongs to the FET family of RNA-binding proteins including also Fused in Sarcoma (FUS), and TATA-box binding protein Associated Factor 15 (TAF15). As consequence of the multifunctional role of EWSR1 leading to a high frequency of transcription of the chromosomal region where the gene is located, EWSR1 is exposed to aberrations such as rearrangements. Consecutive binding to other genes leads to chimeric proteins inducing oncogenesis. The other TET family members are homologous. With the advent of widely used modern molecular techniques during the last decades, it has become obvious that EWSR1 is involved in the development of diverse benign and malignant tumors with mesenchymal, neuroectodermal, and epithelial/myoepithelial features. As oncogenic transformation mediated by EWSR1-fusion proteins leads to such diverse tumor types, there must be a selection on the multipotent stem cell level. In this review, we will focus on the wide variety of soft tissue and bone entities, including benign and malignant lesions, harboring EWSR1 rearrangement. Fusion gene analysis is the diagnostic gold standard in most of these tumors. We present clinicopathologic, immunohistochemical, and molecular features and discuss differential diagnoses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Na ◽  
Yuxiang Wang ◽  
Pengfei Gong ◽  
Xinyang Zhang ◽  
Ke Zhang ◽  
...  

Reverse transcription quantitative real-time PCR is the most commonly used method to detect gene expression levels. In experiments, it is often necessary to correct and standardize the expression level of target genes with reference genes. Therefore, it is very important to select stable reference genes to obtain accurate quantitative results. Although application examples of reference genes in mammals have been reported, no studies have investigated the use of reference genes in studying the growth and development of adipose tissue and the proliferation and differentiation of preadipocytes in chickens. In this study, GeNorm, a reference gene stability statistical algorithm, was used to analyze the expression stability of 14 candidate reference genes in the abdominal adipose tissue of broilers at 1, 4, and 7 weeks of age, the proliferation and differentiation of primary preadipocytes, as well as directly isolated preadipocytes and mature adipocytes. The results showed that the expression of the TATA box binding protein (TBP) and hydroxymethylbilane synthase (HMBS) genes was most stable during the growth and development of abdominal adipose tissue of broilers, the expression of the peptidylprolyl isomerase A (PPIA) and HMBS genes was most stable during the proliferation of primary preadipocytes, the expression of the TBP and RPL13 genes was most stable during the differentiation of primary preadipocytes, and the expression of the TBP and HMBS genes was most stable in directly isolated preadipocytes and mature adipocytes. These results provide reference bases for accurately detecting the mRNA expression of functional genes in adipose tissue and adipocytes of chickens.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1666
Author(s):  
Matthew Parker ◽  
Kenneth Peterson ◽  
Chad Slawson

O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar post-translational modification (PTM) of intracellular proteins linking nutrient flux through the Hexosamine Biosynthetic Pathway (HBP) to the control of cis-regulatory elements in the genome. Aberrant O-GlcNAcylation is associated with the development, progression, and alterations in gene expression in cancer. O-GlcNAc cycling is defined as the addition and subsequent removal of the modification by O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) provides a novel method for cells to regulate various aspects of gene expression, including RNA polymerase function, epigenetic dynamics, and transcription factor activity. We will focus on the complex relationship between phosphorylation and O-GlcNAcylation in the regulation of the RNA Polymerase II (RNAP II) pre-initiation complex and the regulation of the carboxyl-terminal domain of RNAP II via the synchronous actions of OGT, OGA, and kinases. Additionally, we discuss how O-GlcNAcylation of TATA-box binding protein (TBP) alters cellular metabolism. Next, in a non-exhaustive manner, we will discuss the current literature on how O-GlcNAcylation drives gene transcription in cancer through changes in transcription factor or chromatin remodeling complex functions. We conclude with a discussion of the challenges associated with studying O-GlcNAcylation and present several new approaches for studying O-GlcNAc regulated transcription that will advance our understanding of the role of O-GlcNAc in cancer.


2021 ◽  
Author(s):  
James Z.J. Kwan ◽  
Thomas F. Nguyen ◽  
Marek A. Budzyński ◽  
Jieying Cui ◽  
Rachel M. Price ◽  
...  

AbstractTranscription by RNA Polymerase II (Pol II) is initiated by the hierarchical assembly of the Pre-Initiation Complex onto promoter DNA. Decades of in vitro and yeast research have shown that the TATA-box binding protein (TBP) is essential to Pol II initiation by triggering the binding of other general transcription factors, and ensuring proper Pol II loading. Here, we report instead that acute depletion of TBP in mouse embryonic stem cells (mESCs) has no global effect on ongoing Pol II transcription. Surprisingly, Pol II transcriptional induction through the Heat Shock Response or cellular differentiation also occurs normally in the absence of TBP. In contrast, acute TBP depletion severely impairs initiation by RNA Polymerase III. Lastly, we show that a metazoan-specific paralog of TBP is expressed in mESCs and that it binds to promoter regions of active Pol II genes even in the absence of TBP. Taken together, our findings reveal an unexplored TBP-independent process in mESCs that points to a diversity in Pol II transcription initiation mechanisms.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Natalya N Pavlova ◽  
Bryan King ◽  
Rachel H Josselsohn ◽  
Sara Violante ◽  
Victoria L Macera ◽  
...  

An inadequate supply of amino acids leads to accumulation of uncharged tRNAs, which can bind and activate GCN2 kinase to reduce translation. Here, we show that glutamine-specific tRNAs selectively become uncharged when extracellular amino acid availability is compromised. In contrast, all other tRNAs retain charging of their cognate amino acids in a manner that is dependent upon intact lysosomal function. In addition to GCN2 activation and reduced total translation, the reduced charging of tRNAGln in amino-acid-deprived cells also leads to specific depletion of proteins containing polyglutamine tracts including core-binding factor α1, mediator subunit 12, transcriptional coactivator CBP and TATA-box binding protein. Treating amino-acid-deprived cells with exogenous glutamine or glutaminase inhibitors restores tRNAGln charging and the levels of polyglutamine-containing proteins. Together, these results demonstrate that the activation of GCN2 and the translation of polyglutamine-encoding transcripts serve as key sensors of glutamine availability in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document