topological phases of matter
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuqing Li ◽  
Jiahui Zhang ◽  
Yunfei Wang ◽  
Huiying Du ◽  
Jizhou Wu ◽  
...  

AbstractSynthetic gauge fields in synthetic dimensions are now of great interest. This concept provides a convenient manner for exploring topological phases of matter. Here, we report on the first experimental realization of an atom-optically synthetic gauge field based on the synthetic momentum-state lattice of a Bose gas of 133Cs atoms, where magnetically controlled Feshbach resonance is used to tune the interacting lattice into noninteracting regime. Specifically, we engineer a noninteracting one-dimensional lattice into a two-leg ladder with tunable synthetic gauge fields. We observe the flux-dependent populations of atoms and measure the gauge field-induced chiral currents in the two legs. We also show that an inhomogeneous gauge field could control the atomic transport in the ladder. Our results lay the groundwork for using a clean noninteracting synthetic momentum-state lattice to study the gauge field-induced topological physics.


Author(s):  
Eylon Persky ◽  
Ilya Sochnikov ◽  
Beena Kalisky

Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging new quantum materials. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Thies Jansen ◽  
Alexander Brinkman

Abstract Electron-electron interactions can be useful for realizing new nontrivial topological phases of matter. Here, we show by means of a tight-binding model and mean field theory how electron-electron interactions can lead to a topological phase transition. By externally adding or removing electrons from the system a band inversion between two bands with dierent parity is induced. This leads to a topological nontrivial phase if spin-orbit coupling is present. Besides the toy-model illustrating this mechanism, we also propose SmB6 as a possible playground for experimentally realizing a topological phase transition by external tuning.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Nick G. Jones ◽  
Julian Bibo ◽  
Bernhard Jobst ◽  
Frank Pollmann ◽  
Adam Smith ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Todd Van Mechelen ◽  
Wenbo Sun ◽  
Zubin Jacob

AbstractOver the past three decades, graphene has become the prototypical platform for discovering topological phases of matter. Both the Chern $$C\in {\mathbb{Z}}$$ C ∈ Z and quantum spin Hall $$\upsilon \in {{\mathbb{Z}}}_{2}$$ υ ∈ Z 2 insulators were first predicted in graphene, which led to a veritable explosion of research in topological materials. We introduce a new topological classification of two-dimensional matter – the optical N-phases $$N\in {\mathbb{Z}}$$ N ∈ Z . This topological quantum number is connected to polarization transport and captured solely by the spatiotemporal dispersion of the susceptibility tensor χ. We verify N ≠ 0 in graphene with the underlying physical mechanism being repulsive Hall viscosity. An experimental probe, evanescent magneto-optic Kerr effect (e-MOKE) spectroscopy, is proposed to explore the N-invariant. We also develop topological circulators by exploiting gapless edge plasmons that are immune to back-scattering and navigate sharp defects with impunity. Our work indicates that graphene with repulsive Hall viscosity is the first candidate material for a topological electromagnetic phase of matter.


Author(s):  
Torsten Asselmeyer-Maluga

In this paper, we will present some ideas to use 3D topology for quantum computing extending ideas from a previous paper. Topological quantum computing used “knotted” quantum states of topological phases of matter, called anyons. But anyons are connected with surface topology. But surfaces have (usually) abelian fundamental groups and therefore one needs non-Abelian anyons to use it for quantum computing. But usual materials are 3D objects which can admit more complicated topologies. Here, complements of knots do play a prominent role and are in principle the main parts to understand 3-manifold topology. For that purpose, we will construct a quantum system on the complements of a knot in the 3-sphere (see T. Asselmeyer-Maluga, Quantum Rep. 3 (2021) 153, arXiv:2102.04452 for previous work). The whole system is designed as knotted superconductor, where every crossing is a Josephson junction and the qubit is realized as flux qubit. We discuss the properties of this systems in particular the fluxion quantization by using the A-polynomial of the knot. Furthermore, we showed that 2-qubit operations can be realized by linked (knotted) superconductors again coupled via a Josephson junction.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Oliver J. Clark ◽  
Friedrich Freyse ◽  
Irene Aguilera ◽  
Alexander S. Frolov ◽  
Andrey M. Ionov ◽  
...  

AbstractTopological phases of matter offer exciting possibilities to realize lossless charge and spin information transport on ultrafast time scales. However, this requires detailed knowledge of their nonequilibrium properties. Here, we employ time-, spin- and angle-resolved photoemission to investigate the ultrafast response of the Sb(111) spin-polarized surface state to femtosecond-laser excitation. The surface state exhibits a giant mass enhancement which is observed as a kink structure in its energy-momentum dispersion above the Fermi level. The kink structure, originating from the direct coupling of the surface state to the bulk continuum, is characterized by an abrupt change in the group velocity by ~70%, in agreement with our GW-based band structure calculations. Our observation of this connectivity in the transiently occupied band structure enables the unambiguous experimental verification of the topological nature of the surface state. The influence of bulk-surface coupling is further confirmed by our measurements of the electron dynamics, which show that bulk and surface states behave as a single thermalizing electronic population with distinct contributions from low-k electron-electron and high-k electron-phonon scatterings. These findings are important for future applications of topological semimetals and their excitations in ultrafast spintronics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Herbrych ◽  
M. Środa ◽  
G. Alvarez ◽  
M. Mierzejewski ◽  
E. Dagotto

AbstractTopological phases of matter are among the most intriguing research directions in Condensed Matter Physics. It is known that superconductivity induced on a topological insulator’s surface can lead to exotic Majorana modes, the main ingredient of many proposed quantum computation schemes. In this context, the iron-based high critical temperature superconductors are a promising platform to host such an exotic phenomenon in real condensed-matter compounds. The Coulomb interaction is commonly believed to be vital for the magnetic and superconducting properties of these systems. This work bridges these two perspectives and shows that the Coulomb interaction can also drive a canonical superconductor with orbital degrees of freedom into the topological state. Namely, we show that above a critical value of the Hubbard interaction the system simultaneously develops spiral spin order, a highly unusual triplet amplitude in superconductivity, and, remarkably, Majorana fermions at the edges of the system.


2021 ◽  
Author(s):  
Roderich Moessner ◽  
Joel E. Moore

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
He Gao ◽  
Haoran Xue ◽  
Zhongming Gu ◽  
Tuo Liu ◽  
Jie Zhu ◽  
...  

AbstractTopological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.


Sign in / Sign up

Export Citation Format

Share Document