Due to network effects, Contact Tracing Apps (CTAs) are only effective if many people download them. However, the response to CTAs has been tepid. For example, in France less than 2 million people (roughly 3% of the population) downloaded the CTA. Against this background, we carry out an online experiment to show that CTAs can still play a key role in containing the spread of COVID-19, provided that they are re-conceptualized to account for insights from behavioral science. We start by showing that carefully devised in-app notifications are effective in inducing prudent behavior like wearing a mask or staying home. In particular, people that are notified that they are taking too much risk and could become a superspreader engage in more prudent behavior. Building on this result, we suggest that CTAs should be re-framed as Behavioral Feedback Apps (BFAs). The main function of BFAs would be providing users with information on how to minimize the risk of contracting COVID-19, like how crowded a store is likely to be. Moreover, the BFA could have a rating system that allows users to flag stores that do not respect safety norms like wearing masks. These functions can inform the behavior of app users, thus playing a key role in containing the spread of the virus even if a small percentage of people download the BFA. While effective contact tracing is impossible when only 3% of the population downloads the app, less risk taking by small portions of the population can produce large benefits. BFAs can be programmed so that users can also activate a tracing function akin to the one currently carried out by CTAs. Making contact tracing
an ancillary, opt-in function might facilitate a wider acceptance of BFAs.