caudomedial nidopallium
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256709
Author(s):  
Jake V. Aronowitz ◽  
Alice Perez ◽  
Christopher O’Brien ◽  
Siaresh Aziz ◽  
Erica Rodriguez ◽  
...  

New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.


Author(s):  
Yining Chen ◽  
Jon T. Sakata

Sensory learning during critical periods in development has lasting effects on behavior. Neuromodulators like dopamine and norepinephrine (NE) have been implicated in various forms of sensory learning, but little is known about their contribution to sensory learning during critical periods. Songbirds like the zebra finch communicate with each other using vocal signals (e.g., songs) that are learned during a critical period in development, and the first crucial step in song learning is memorizing the sound of an adult conspecific's (tutor's) song. Here we analyzed the extent to which NE modulates the auditory learning of a tutor's song and the fidelity of song imitation. Specifically, we paired infusions of NE or vehicle into the caudomedial nidopallium (NCM) with brief epochs of song tutoring. We analyzed the effect of NE in juvenile zebra finches that had or had not previously been exposed to song. Regardless of previous exposure to song, juveniles that received NE infusions into NCM during song tutoring produced songs that were more acoustically similar to the tutor song and that incorporated more elements of the tutor song than juveniles with control infusions. These data support the notion that NE can regulate the formation of sensory memories that shape the development of vocal behaviors that are used throughout an organism's life.


2020 ◽  
Author(s):  
Jake V. Aronowitz ◽  
Alice Perez ◽  
Christopher O’Brien ◽  
Siaresh Aziz ◽  
Erica Rodriguez ◽  
...  

AbstractNew neurons undergo a critical period soon after migration during which the behavior of the animal may result in the survival or culling of these cells. In the songbird song system, new neurons may be maintained in the song motor pathway with respect to motor progression toward a target song--during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx. We found no effect of aberrant song on numbers of new neurons in the HVC of the song motor pathway, a loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. We propose new neuron survival may be determined in response to behavioral feedback in accordance with the function of new neurons within a given brain region. Studying the effects of singing behaviors on new neurons across multiple brain regions that subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.


2019 ◽  
Author(s):  
Daniel M. Vahaba ◽  
Amelia Hecsh ◽  
Luke Remage-Healey

ABSTRACTBirdsong, like human speech, is learned early in life by first memorizing an auditory model. Once memorized, birds compare their own burgeoning vocalizations to their auditory memory, and adjust their song to match the model. While much is known about this latter part of vocal learning, less is known about how initial auditory experiences are formed and consolidated. In both adults and developing songbirds, there is strong evidence suggesting the caudomedial nidopallium (NCM), a higher order auditory forebrain area, is the site of auditory memory consolidation. However, the mechanisms that facilitate this consolidation are poorly understood. One likely mechanism is 17β-estradiol (E2), which is associated with speech-language development and disorders in humans, and is abundant in both mammalian temporal cortex and songbird NCM. Circulating E2 is also elevated during the auditory memory phase, and in NCM immediately after song learning sessions, suggesting it functions to encode recent auditory experience. Therefore, we tested a role for E2 production in auditory memory consolidation during development using a comprehensive set of investigations to ask this question at the level of neuroanatomy, neurophysiology, and behavior. Our results demonstrate that while systemic estrogen synthesis blockade regulates juvenile song production, inhibiting E2 synthesis locally within NCM does not adversely affect song learning outcomes. Surprisingly, early life E2 manipulations in NCM modify the neural representations of birds’ own song and the model tutor song in both NCM and a downstream sensorimotor nucleus (HVC). Further, we show that the capacity to synthesize neuroestrogens remains high throughout development alongside substantial changes in NCM cell density across age. Taken together, these findings suggest that E2 plays a multifaceted role during development, and demonstrate that contrary to prediction, unilateral post-training estrogen synthesis blockade in the auditory cortex does not negatively impact vocal learning. Acute downregulation of neuroestrogens are therefore likely permissive for juvenile auditory memorization, while neuroestrogen synthesis influences communication production and representation in adulthood.


2019 ◽  
Author(s):  
Elliot A. Layden ◽  
Kathryn E. Schertz ◽  
Marc G. Berman ◽  
Sarah E. London

AbstractMuch as humans acquire speech in early childhood, the zebra finch (Taeniopygia guttata) songbird learns to sing from an adult “tutor” during the first three months of life. Within a well-defined critical period (CP), juvenile zebra finches memorize a tutor song that will guide subsequent motor patterning. This sensory learning process is mediated by tutor experience-dependent neuroplasticity within the auditory forebrain. Here, we used longitudinal resting-state fMRI analyses to investigate whether tutor experience also modifies patterns of functional connectivity (FC) within the juvenile zebra finch brain. Eighteen male zebra finches (only males sing) were scanned before, during, and at the end of the CP, as well as at the young adult stage. Prior to the onset of the CP, birds were separated into rearing conditions: Normal (aviary-housed; N=5), Tutored (one adult male tutor and one adult female; N=7), and Isolate (two adult females, isolated from male song; N=6). Brain-wide voxel-wise analyses identified a single cluster overlapping the left caudomedial nidopallium (NCM) of the auditory forebrain that showed developmentally decreasing FC strength in Isolates but stable or increasing FC in Normal and Tutored birds. Additionally, FC between left NCM and left dorsal cerebellum showed a parallel developmental difference. Developmental changes in left NCM FC strength statistically mediated condition-related differences in song stereotypy. These results extend previous reports of tutor experience-dependent plasticity in NCM at epigenetic, genomic, molecular, and cellular levels to the whole-brain functional network level by demonstrating that tutor experience also influences the development of NCM FC. Moreover, these results link NCM FC to the emergence of song stereotypy.


2018 ◽  
Vol 91 (4) ◽  
pp. 193-200 ◽  
Author(s):  
Kathleen S. Lynch ◽  
Matthew I.M. Louder ◽  
Mark E. Hauber

Species recognition mediates the association of individuals with conspecifics. Learned cues often facilitate species recognition via early social experience with parents and siblings. Yet, in some songbirds, the production of species-typical vocalizations develops in the absence of early social experiences. Here, we investigate the auditory-evoked neural responses of juvenile red-winged blackbirds (Agelaius phoeniceus), a nonparasitic (parental) species within the Icterid family and contrast these results with a closely related Icterid parasitic species that lacks parental care, the brown-headed cowbird (Molothrus ater). We demonstrate that immediate early gene (IEG) activity in the caudomedial mesopallium (CMM) is selectively evoked in response to conspecific non-learned vocalizations in comparison to 2 types of heterospecific non-learned vocalizations, independent of the acoustic similarity patterns between the playback stimuli. This pattern, however, was not detected in the caudomedial nidopallium (NCM). Because the red-winged blackbird is a parental species, the conspecific non-learned vocalization is presumably a familiar sound to the juvenile red-winged blackbird, whereas the heterospecific non-learned vocalizations are novel. We contrast results reported here with our recent demonstration of selective IEG induction in response to non-learned conspecific vocalizations in juvenile parasitic brown-headed cowbirds, in which conspecific non-learned vocalizations are presumably novel. In this case, selective IEG induction from conspecific non-learned vocalization occurred within NCM but not within CMM. By comparing closely related species with stark differences in the early exposure to conspecifics, we demonstrate that CMM and NCM respond to familiar vs. novel non-learned vocalizations in a manner that parallel previously reported regional responses to learned vocalizations such as conspecific songs.


2017 ◽  
Vol 89 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Susan M. Lyons ◽  
Keith W. Sockman

In many species, successful reproduction is dependent on the ability to adjust social behavior in response to an ever-changing social environment. Because a sexual signal's value and meaning can differ between females and males, responses to those signals should also differ. One way individuals can modulate social behavior is through experience-dependent modulation of the sensory systems that process social signals. Central monoamines (norepinephrine, dopamine, serotonin) modulate neural sensitivity to social stimuli and are key regulators of experience-dependent neuroplasticity in vertebrate sensory systems. However, few studies have examined how exposure to different sexual signals influences monoaminergic activity in female compared to male sensory systems. We used Lincoln's sparrows (Melospiza lincolnii) to examine sex differences in how variation in the trill performance of song influences central monoaminergic activity in the auditory telencephalon. Trill performance measures the rate at which a song syllable is produced relative to the syllable's frequency bandwidth and is thought to reflect the difficulty with which songs are produced. High-performance trills are more threatening to males but more attractive to females. We found that the effects of trill performance on monoaminergic activity were sex-dependent. Relative to the response to low-performance songs, exposure to high-performance songs decreased noradrenergic activity in the caudomedial nidopallium, and tended to decrease serotoninergic activity in the caudomedial mesopallium and caudomedial nidopallium of the auditory telencephalon in females, but in males, the monoamine measurements were indistinguishable between song treatments. These results suggest that the mechanisms underlying sensory processing of male sexual signals differ between the sexes.


2015 ◽  
Vol 113 (5) ◽  
pp. 1480-1492 ◽  
Author(s):  
Brittany A. Bell ◽  
Mimi L. Phan ◽  
David S. Vicario

How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions.


Sign in / Sign up

Export Citation Format

Share Document