matched layers
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 28)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Selim Hossain ◽  
Omar Faruq ◽  
Md. Masud Rana ◽  
Shuvo Sen ◽  
Md. Dulal Haque ◽  
...  

Abstract This research article demonstrates a good simulation result for identifying and detecting various industrial chemicals in a Terahertz (THz) waveguide with a new heptagonal, five layers of heptagonal photonic fiber elliptic form, heptagonal clading shape (H-PCF). COMSOL 4.2 software based on finite element (FEM) methods and perfectly matched layers check our composition (PML). The different chemicals are also differentiated and identified by each other in different parameters H-PCF fibers show a high relative sensitivity of ethanol of approximately 86.50 percent after numerical analysis, Benzene around 89.35%, and water around 85.15% at a frequency of around 0.7 THz. In our experiment, we obtained very low confinement losses at 1 terahertz (THz) such as 5.95×10−08 dB/m for Ethanol 6.67×10−08 dB/m for Benzene, and 5.80×10−08 dB/m for water. Regarding these results, we can strongly recommend that our proposed heptagonal photonic crystal fiber (H-PCF) will be more congenial in biomedical, bio-medicine, and industrial areas for the identification and detection of various types of chemicals with the help of a THz waveguide.


2021 ◽  
Author(s):  
Md. Selim Hossain ◽  
Shuvo Sen

Abstract To detect chemicals, we proposed a photonic crystal fiber (PCF) with hexagonal cladding and a hexahedron core (THz). Circular air holes (CAHs) in the vestibule provide the basis of the suggested sensor. To develop and evaluate our suggested hexahedron PCF sensor, we employed the finite element (FEM) technique and perfectly matched layers (PML), which utilized the optical parameters numerically. Here, 92.65%, 95.25%, and 90.70% are relatively sensitive, and confining losses are low. the value 5.40×10− 08, 6.70×10− 08 dB/m, and 5.75×10− 08 dB/m for three chemicals such as Ethanol (n = 1.354), Benzene (n = 1.366) and Water (n = 1.330) and effective material loss (EML) of 0.00694 cm− 1. The suggested Hx-PCF sensor has been successfully tested at 1 THz. We are certain that the suggested sensor's optimal geometric structure can be manufactured and that it can contribute to real-world applications in biomedicine and industry. In terahertz areas, our suggested PCF fiber is also suited for a wide range of medical signals and applications (THz).


2021 ◽  
Vol 433 ◽  
pp. 110180
Author(s):  
Philippe Marchner ◽  
Hadrien Bériot ◽  
Xavier Antoine ◽  
Christophe Geuzaine

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Patrick Atsu Agbemabiese ◽  
Emmanuel Kofi Akowuah

AbstractA numerical analysis of a hexagonal PCF structure with four circular air hole rings around the core has been presented in this paper. By utilizing a full vectorial finite element method with perfectly matched layers, propagation properties such as birefringence, chromatic dispersion and confinement losses are numericaly evaluated for the proposed PCF structure. Specifically, birefringence of 2.018 × 10–2, nonlinear coefficients of 40.682 W−1 km−1, negative chromatic dispersion of − 47.72 ps/km.nm at 1.55 µm and − 21 to − 105 ps/km.nm at the telecommunication band of C-U have been reported.


Sign in / Sign up

Export Citation Format

Share Document