surface chemistries
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 38)

H-INDEX

30
(FIVE YEARS 6)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yukio Cho ◽  
Ty Christoff-Tempesta ◽  
Dae-Yoon Kim ◽  
Guillaume Lamour ◽  
Julia H. Ortony

AbstractSelf-assembly of small molecules in water provides a powerful route to nanostructures with pristine molecular organization and small dimensions (<10 nm). Such assemblies represent emerging high surface area nanomaterials, customizable for biomedical and energy applications. However, to exploit self-assembly, the constituent molecules must be sufficiently amphiphilic and satisfy prescribed packing criteria, dramatically limiting the range of surface chemistries achievable. Here, we design supramolecular nanoribbons that contain: (1) inert and stable internal domains, and (2) sacrificial surface groups that are thermally labile, and we demonstrate complete thermal decomposition of the nanoribbon surfaces. After heating, the remainder of each constituent molecule is kinetically trapped, nanoribbon morphology and internal organization are maintained, and the nanoribbons are fully hydrophobic. This approach represents a pathway to form nanostructures that circumvent amphiphilicity and packing parameter constraints and generates structures that are not achievable by self-assembly alone, nor top-down approaches, broadening the utility of molecular nanomaterials for new targets.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3302
Author(s):  
Charlotte A. Henshaw ◽  
Adam A. Dundas ◽  
Valentina Cuzzucoli Crucitti ◽  
Morgan R. Alexander ◽  
Ricky Wildman ◽  
...  

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polymeric surfactants. Here, micropipette manipulation methods were used to optimise the concentration of bespoke polymeric surfactants to produce biodegradable (poly(d,l-lactic acid) (PDLLA)) microparticles with unique, bio-instructive surface chemistries. The effect of these three-dimensional surfactants on the interfacial tension of the system was analysed. It was determined that to provide adequate stabilisation, a low level (0.1% (w/v)) of poly(vinyl acetate-co-alcohol) (PVA) was required. Optimisation of the PVA concentration was informed by micropipette manipulation. As a result, successful, monodisperse particles were produced that maintained the desired bio-instructive surface chemistry.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 675
Author(s):  
Michael Toni Sturm ◽  
Harald Horn ◽  
Katrin Schuhen

Due to the fact, that microplastics are a global environmental problem, new ways for their removal from water, soil and air need to be developed. New materials in combination with easy to implement technologies for microplastic removal come into the focus of scientific studies and engineering, especially for application in water resources. In our comparative case study, the effects of water composition and temperature on the agglomeration-fixation reaction of microplastics using organosilanes were examined. We compared biologically treated municipal wastewater, seawater and demineralized water at temperatures ranging from 7.5–40 °C. Temperature variations and tested water compositions showed no negative effect on microplastic removal. The residues of the organosilanes remaining in the water after the fixation process were monitored using ICP-OES and DOC measurements. Only one of the organosilanes tested showed no dissolved residues in the waters. Microplastic encompasses a multitude of different types of polymers with different properties and surface chemistries. Therefore, we compared the efficiency of the process for polyethylene, polypropylene, polyamide, polyester, and polyvinylchloride as examples of common polymer types with different chemical compositions. A strong effect of the polarity of microplastics and organosilanes on removal efficiency was observed. The organic groups of organosilanes can be chemically adapted to different polymer types.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 986
Author(s):  
Berceste Guler ◽  
Ahu Uraz ◽  
Hasan Hatipoğlu ◽  
Mehmet Yalım

The aim of the present study is to compare two different implant surface chemistries of failing dental implants. Sixteen patients (mean age: 52 ± 8.27 with eight females and eight males) and 34 implants were included in the study. Group-I implants consisted of a blasted/etched surface with a final process surface, while Group-II implants consisted of the sandblasted acid etching (SLA) method. The chemical surface analysis was performed by the energy dispersive X-ray spectroscopy (EDX) method from coronal, middle, and apical parts of each implant. Titanium (Ti) element values were found to be 20.22 ± 15.7 at.% in Group I and 33.96 ± 13.62 at.% in Group-II in the middle of the dental implants. Aluminum (Al) element values were found to be 0.01 ± 0.002 in Group-I and 0.17 ± 0.28 at.% in Group II in the middle of the dental implants, and statistically significant differences were found between the groups for the Al and Ti elements in the middle of the dental implants (p < 0.05). There was a statistically significant difference for the Ti, Al, O, Ca, Fe, P, and Mg elements in the coronal, middle, and apical parts of the implants in the intragroup evaluation (p < 0.05). It is reported that different parts of the implants affected by peri-implant inflammation show different surface chemistries, from coronal to apical, but there is no difference in the implants with different surfaces.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongchao Zhao ◽  
Joseph Che-Yen Wang ◽  
Mi Zhang ◽  
Nicholas A. Lyktey ◽  
Martin F. Jarrold ◽  
...  

AbstractSymmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Saeed Al-Meer ◽  
Khalid A. Al-Saad

Non-magnetic and magnetic low-cost biochar (BC) from date pits (DP) were applied to remove tigecycline (TIGC) from TIGC-artificially contaminated water samples. Pristine biochar from DP (BCDP) and magnetite-decorated biochar (MBC-DP) were therefore prepared. Morphologies and surface chemistries of BCDP and MBC-DP were explored using FT-IR, Raman, SEM, EDX, TEM, and BET analyses. The obtained IR and Raman spectra confirmed the presence of magnetite on the surface of the MBC-DP. SEM results showed mesoporous surface for both adsorbents. BET analysis indicated higher amount of mesopores in MBC-DP. Box–Behnken (BB) design was utilized to optimize the treatment variables (pH, dose of the adsorbent (AD), concentration of TIGC [TIGC], and the contact time (CT)) and maximize the adsorptive power of both adsorbents. Higher % removal (%R), hitting 99.91%, was observed using MBC-DP compared to BCDP (77.31%). Maximum removal of TIGC (99.91%) was obtained using 120 mg/15 mL of MBC-DP for 10 min at pH 10. Equilibrium studies showed that Langmuir and Freundlich isotherms could best describe the adsorption of TIGC onto BCDP and MBC-DP, respectively, with a maximum adsorption capacity (qmax) of 57.14 mg/g using MBC-DP. Kinetics investigation showed that adsorption of TIGC onto both adsorbents could be best-fitted to a pseudo-second-order (PSO) model.


2020 ◽  
Vol 5 (4) ◽  
pp. 1044-1052 ◽  
Author(s):  
Tianjie Li ◽  
Lijing Hao ◽  
Jiangyu Li ◽  
Chang Du ◽  
Yingjun Wang

2020 ◽  
Vol 8 (47) ◽  
pp. 17487-17499
Author(s):  
Wenyan Li ◽  
Xiangheng He ◽  
Kun Liu ◽  
Wei Wen ◽  
Lu Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document