crustal earthquakes
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 93)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Takuya Nishimura

Abstract In this study, we developed a regional likelihood model for crustal earthquakes using geodetic strain rate data from southwest Japan. First, smoothed strain rate distributions were estimated from continuous GNSS measurements. Second, we removed the elastic strain rate attributed to interplate coupling on the subducting plate boundary, including the observed strain rate, under the assumption that it is not attributed to permanent loading on crustal faults. We then converted the geodetic strain rates to seismic moment rates and calculated the 30-year probability for M ≥ 6 earthquakes in 0.2 × 0.2° cells, using a truncated Gutenberg–Richter law and time-independent Poisson process. Likelihood models developed using different conversion equations, seismogenic thicknesses, and rigidities were validated using the epicenters and moment distribution of historical earthquakes. The average seismic moment rate of crustal earthquakes recorded during 1583–2020 was only 13–20 % of the seismic moment rate converted from the geodetic data, which suggests that the observed geodetic strain rate includes considerable inelastic strain. Therefore, we introduced an empirical coefficient to calibrate the moment rate converted from geodetic data with the moment rate of the earthquakes. Several statistical scores and the Molchan diagram showed that all models could predict real earthquakes better than the reference model, in which earthquakes occur uniformly in space. Models using principal horizontal strain rates exhibited better predictive skill than those using the maximum horizontal shear strain rate. There was no significant difference in the predictive skill between uniform and variable distributions for seismogenic thickness and rigidity. The preferred models suggested high 30-year-probability in the Niigata–Kobe Tectonic Zone and central Kyushu, exceeding 1% in more than half of the analyzed region. Model predictive skill was also verified by a prospective test using earthquakes recorded during 2010–2020. This study suggests that the proposed forecast model based on geodetic data can improve the regional likelihood model for crustal earthquakes in Japan in combination with other forecast models based on active faults and seismicity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongyu Sun ◽  
Matej Pec

AbstractFault zones accommodate relative motion between tectonic blocks and control earthquake nucleation. Nanocrystalline fault rocks are ubiquitous in “principal slip zones” indicating that these materials are determining fault stability. However, the rheology of nanocrystalline fault rocks remains poorly constrained. Here, we show that such fault rocks are an order of magnitude weaker than their microcrystalline counterparts when deformed at identical experimental conditions. Weakening of the fault rocks is hence intrinsic, it occurs once nanocrystalline layers form. However, it is difficult to produce “rate weakening” behavior due to the low measured stress exponent, n, of 1.3 ± 0.4 and the low activation energy, Q, of 16,000 ± 14,000 J/mol implying that the material will be strongly “rate strengthening” with a weak temperature sensitivity. Failure of the fault zone nevertheless occurs once these weak layers coalesce in a kinematically favored network. This type of instability is distinct from the frictional instability used to describe crustal earthquakes.


Author(s):  
Robert E. Chase ◽  
Abbie B. Liel ◽  
Nicolas Luco ◽  
Zach Bullock

AbstractWe evaluate the seismic performance of modern seismically designed wood light-frame (WLF) buildings, considering regional seismic hazard characteristics that influence ground motion duration and frequency content and, thus, seismic risk. Results show that WLF building response correlates strongly with ground motion spectral shape but weakly with duration. Due to the flatter spectral shape of ground motions from subduction events, WLF buildings at sites affected by these earthquakes may experience double the economic losses for a given intensity of shaking, and collapse capacities may be reduced by up to 50%, compared to those at sites affected by crustal earthquakes. These differences could motivate significant increases in design values at sites affected by subduction earthquakes to achieve the uniform risk targets of the American Society of Civil Engineers (ASCE) 7 standard.


2021 ◽  
Vol 61 (6) ◽  
pp. 896-904
Author(s):  
L. P. Korsunova ◽  
A. D. Legen’ka

Abstract The changes in two characteristics of the sporadic Е layer are studied for a pair of stations: the probability of the occurrence PEs and the limiting frequency of the ordinary wave of the sporadic E layer of the ionosphere foEs during a 10-day period of the preparation of 19 crustal earthquakes in the Pacific region with М = 6.5–7.4. The stations are located hundreds of kilometers from each other, but they fall within the zone of the preparation of a particular earthquake (the sizes of the earthquake preparation zone are estimated with formulas known in the scientific literature that relate the size of the radius of the earthquake preparation zone and the earthquake magnitude). The measurement data obtained at the ground stations of ionospheric vertical sounding are analyzed. The deviations of diurnal values of PEs (δPEs) from the median over the studied time interval and the integral diurnal values of the total irregular fluctuations in foEs (ΔfEsΣ) are used to identify possible ionospheric earthquake precursors. The coincidence of the time of appearance of the deviation maxima for both parameters before the earthquakes at each of the stations on the same day (from 1 to 4 days before the earthquake day) is recorded in the diurnal changes in the indicated values during the preparation periods of all of the considered earthquakes. The criteria for the identification of a short-term ionospheric earthquake precursor is discussed. Comparison of the analysis results for manual and automatic ionogram processing showed the prospects for the use the proposed parameters obtained according to the data of the distant ionosondes to identify the short-term ionospheric precursors of an earthquake with М = 6.5–7.0.


2021 ◽  
Vol 64 (Vol. 64 (2021)) ◽  
Author(s):  
Tiziana Sgroi ◽  
Graziella Barberi ◽  
Alessandro Marchetti

The Western Ionian Sea is characterised by an active and diffuse seismicity, directly related to the convergence of the European and African Plates and by gravitational sinking and rollback of the  oceanic lithosphere. In this area, the location of earthquakes is characterised by considerable uncertainties due to large azimuthal gaps, resulting in notable location errors. This problem was  partially overcome with the use of data recorded by NEMO-SN1 seafloor observatory (October 2002 February 2003; June 2012 - May 2013). We relocated 1130 crustal and sub-crustal earthquakes  using land network and NEMO-SN1 data. As most events occurred on Mt. Etna, we focused on 358  earthquakes in the offshore area and near the coasts of Sicily and Calabria. The use of the combined  land-marine networks has improved the earthquake locations in terms of azimuthal GAP, as well as  in horizontal and vertical errors. The comparison between locations performed with and without NEMO-SN1 data shows that differences in latitude, longitude and depths are more evident in the Western Ionian Sea and in the coast of Sicily, where values of the differences over 5 km correspond  to structural heterogeneities. The increased number of seismic stations deployed on land from 2003  to 2012 did not influence the location of events occurring offshore, where NEMO-SN1 continued to be the distinctive tool in the location process. Moreover, the new 73 focal mechanisms computed with  P-wave polarities from NEMO-SN1 and land stations are in agreement with the regional structural   model, showing a prevalent normal, normal/oblique, and strike-slip kinematics. The similarity of two   new focal solutions with the mechanisms of the main shock and aftershock of the 1990 earthquake  demonstrates that the seismic structures are still active and potentially dangerous. The P-wave travel- time residual analysis confirms the activity along the main structural alignments.  A single point of observation in the Ionian Sea can significantly improve the quality of locations, giving an opportunity to focus on the seismogenic structures responsible for the occurrence of  medium-to-high magnitude earthquakes.


Author(s):  
Hongwei Wang ◽  
Chunguo Li ◽  
Ruizhi Wen ◽  
Yefei Ren

ABSTRACT It is crucial to include additional site amplification effects resulting from the thick sediment on ground motions in the reliable assessment for seismic hazard in sedimentary basins. Ground-motion residual analysis with respect to ground-motion prediction equation is performed to evaluate additional site amplifications at over 200 K-NET stations within and around Kanto basin. We first investigate the potential effects on additional site amplifications resulted from the sediment depth and several source-dependent factors. Results reveal that source-to-site distance, focal depth, and source azimuth all have nonnegligible effects on additional site amplifications, especially the focal depth. Thick sedimentary sites amplify long-period ground motions from distant earthquakes more strongly than those from local earthquakes. Ground motions from shallow crustal earthquakes generally experience much stronger amplifications than those from those deep subduction earthquakes, much more predominant for long-period ground motions (>1.0 s) at thick sedimentary sites. Meanwhile, we develop the empirical model after integrating contributions from sediment depth, source-to-site distance, and focal depth for predicting additional site amplification effects. Considering the typical case of the distant shallow crustal earthquakes, additional site amplifications at thick sedimentary sites within Kanto basin generally show an increasing trend with the oscillation period increased, whereas they are generally characterized by a decreasing trend at shallow sedimentary sites outside the basin. The mean additional site amplification is up to about 2.0 within Kanto basin, whereas 0.5–0.65 outside Kanto basin, for ground motions at oscillation periods of 2.0–5.0 s. Mean amplifications within Kanto basin are about 3.5 times larger than those outside the basin for long-period ground motions at 2.0–5.0 s. Sites northeast to Kanto basin show the largest amplifications up to about 3.0 at periods of 0.15 and 5.0 s, which may be resulted from the basin edge effects.


2021 ◽  
Vol 111 (5) ◽  
pp. 2408-2425 ◽  
Author(s):  
Reiko Tajima ◽  
Hiroto Tanaka ◽  
Changjiang Wu

ABSTRACT The locations and scales of the seismic sources of inland crustal earthquakes without surface fault traces (Mw≲6.5 in Japan) are difficult to identify in advance, even by conducting detailed surveys, and in such a case, it seems rational to uniformly evaluate ground-motion levels in the regions with similar seismogenic conditions. For such earthquakes, we first developed a technique to estimate ground-motion levels in a specific area by calculating the response spectra corresponding to nonexceedance probabilities (NEPs) based on probability density functions derived using strong-motion records. These records were used in the analysis after adjustments to the condition of being and on hard bedrock (VS≈2000–3000  m/s) in the source vicinity. Next, we developed an empirical method to estimate the correspondence between the NEP spectrum levels and their annual exceedance probabilities (AEPs) by considering annual occurrence frequencies for the target event group. Moreover, we showed an example that applied our approach to all over Japan, where a large number of downhole records on stiff baserock (VS≈700–3000  m/s) have been obtained by the KiK-net, a dense nationwide network of vertical array stations (pairs of surface and downhole recordings). In the example, we demonstrated that the empirical AEP spectral levels using our method are consistent with AEP response spectra, that is, uniform hazard spectra, derived from the probabilistic seismic hazard analysis using the kinematic fault rupture modeling method in a previous study.


Sign in / Sign up

Export Citation Format

Share Document