kanto basin
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Hongwei Wang ◽  
Chunguo Li ◽  
Ruizhi Wen ◽  
Yefei Ren

ABSTRACT It is crucial to include additional site amplification effects resulting from the thick sediment on ground motions in the reliable assessment for seismic hazard in sedimentary basins. Ground-motion residual analysis with respect to ground-motion prediction equation is performed to evaluate additional site amplifications at over 200 K-NET stations within and around Kanto basin. We first investigate the potential effects on additional site amplifications resulted from the sediment depth and several source-dependent factors. Results reveal that source-to-site distance, focal depth, and source azimuth all have nonnegligible effects on additional site amplifications, especially the focal depth. Thick sedimentary sites amplify long-period ground motions from distant earthquakes more strongly than those from local earthquakes. Ground motions from shallow crustal earthquakes generally experience much stronger amplifications than those from those deep subduction earthquakes, much more predominant for long-period ground motions (>1.0 s) at thick sedimentary sites. Meanwhile, we develop the empirical model after integrating contributions from sediment depth, source-to-site distance, and focal depth for predicting additional site amplification effects. Considering the typical case of the distant shallow crustal earthquakes, additional site amplifications at thick sedimentary sites within Kanto basin generally show an increasing trend with the oscillation period increased, whereas they are generally characterized by a decreasing trend at shallow sedimentary sites outside the basin. The mean additional site amplification is up to about 2.0 within Kanto basin, whereas 0.5–0.65 outside Kanto basin, for ground motions at oscillation periods of 2.0–5.0 s. Mean amplifications within Kanto basin are about 3.5 times larger than those outside the basin for long-period ground motions at 2.0–5.0 s. Sites northeast to Kanto basin show the largest amplifications up to about 3.0 at periods of 0.15 and 5.0 s, which may be resulted from the basin edge effects.


Author(s):  
Jinjun Hu ◽  
Lei Hu ◽  
Hui Zhang ◽  
Chaoyue Jin ◽  
Zhongwei Wang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yadab P. Dhakal ◽  
Takashi Kunugi

We analyzed strong-motion records at the ground and borehole in and around the Kanto Basin and the seafloor in the Japan Trench area from three nearby offshore earthquakes of similar magnitudes (Mw 5.8–5.9). The seafloor strong-motion records were obtained from S-net, which was established to enhance tsunami and earthquake early warnings after the 2011 great Tohoku-oki earthquake disaster. The borehole records were obtained from MeSO-net, a dense network of seismometers installed at a depth of 20 m in the Tokyo metropolitan area. The ground records were obtained from the K-NET and KiK-net networks, established after the 1995 great Hanshin-Awaji earthquake disaster. The MeSO-net and S-net stations record the shakings continuously, while the K-NET and KiK-net records are based on triggering thresholds. It is crucial to evaluate the properties of strong motions recorded by the S-net for earthquake early warning (EEW). This paper compared the peak ground accelerations (PGAs) and peak ground velocities (PGVs) between the S-net and K-NET/KiK-net stations. Because the MeSO-net records were from the borehole, we compared the PGAs and significant durations of the low-frequency motions (0.1–0.5 Hz) between the S-net and MeSO-net stations from identical record lengths. We found that the horizontal PGAs and PGVs at the S-net sites were similar to or larger than the K-NET/KiK-net sites for the S wave. In contrast, the vertical PGAs and PGVs at the S-net sites were similar to or smaller than those at the K-NET/KiK-net sites for the S wave. Particularly, the PGAs and PGVs for the P-wave parts on the vertical-component records of S-net were, on average, much smaller than those of K-NET/KiK-net records. The difference was more evident in the PGAs. The average ratios of S-wave horizontal to vertical PGAs were about 2.5 and 5 for the land and S-net sites, respectively. The low-frequency PGAs at the S-net sites were similar to or larger than those of the MeSO-net borehole records. The significant durations between the two-networks low-frequency records were generally comparable. Quantification of the results from a larger dataset may contribute to ground-motion prediction for EEW and the design of the offshore facilities.


2020 ◽  
Author(s):  
Shunsuke Takemura ◽  
Kazuo Yoshimoto ◽  
Katsuhiko Shiomi

Abstract We conducted centroid moment tensor (CMT) inversions of moderate ( Mw 4.5–6.5) earthquakes in the Kanto region, Japan, using a local three-dimensional (3D) model. We then investigated the effects of our 3D CMT solutions on long-period ground motion simulations. Grid search CMT inversions were conducted using displacement seismograms for periods of 25–100 s. By comparing our 3D CMT solutions with those from the local one-dimensional (1D) catalog, we found that our 3D CMT inversion systematically provides magnitudes smaller than those in the 1D catalog. The Mw differences between 3D and 1D catalogs tend to be significant for earthquakes within the oceanic slab. By comparing ground motion simulations between 1D and 3D velocity models, we confirmed that observed Mw differences could be explained by differences in the rigidity structures around the source regions between 3D and 1D velocity models. The 3D velocity structures (especially oceanic crust and mantle) are important for estimating seismic moments in intraslab earthquakes, which are related to fault size estimation. A detailed discussion for intraslabe seismicity can be conducted by using the 3D CMT catalog. The seismic moments also directly affect the amplitudes of ground motions. The 3D CMT catalog allows us to directly conduct the precise forward and inverse modeling of long-period ground motion without adjusting source models, which have been typically applied in the cases using the 1D CMT catalog. We also conducted long-period ground motion simulations using our 3D CMT solutions to evaluate the reproducibility of long-period ground motions at stations within the Kanto Basin. The simulations of our 3D CMT solutions well-reproduced observed ground motions for periods longer than 10 s, even at stations within the Kanto Basin. The reproducibility of simulations was improved from those using solutions in the 1D catalog.


2020 ◽  
Author(s):  
Shunsuke Takemura ◽  
Kazuo Yoshimoto ◽  
Katsuhiko Shiomi

Abstract We conducted centroid moment tensor (CMT) inversions of moderate (Mw 4.5–6.5) earthquakes in the Kanto region, Japan, using a local three-dimensional (3D) model. We then investigated the effects of our 3D CMT solutions on long-period ground motion simulations. Grid search CMT inversions were conducted using displacement seismograms for periods of 25–100 s. By comparing our 3D CMT solutions with those from the local one-dimensional (1D) catalog, we found that our 3D CMT inversion systematically provides magnitudes smaller than those in the 1D catalog. The Mw differences between 3D and 1D catalogs tend to be significant for earthquakes within the oceanic slab. By comparing ground motion simulations between 1D and 3D velocity models, we confirmed that observed Mw differences could be explained by differences in the rigidity structures around the source regions between 3D and 1D velocity models. The 3D velocity structures (especially oceanic crust and mantle) are important for estimating seismic moments in intraslab earthquakes, which are related to fault size estimation. A detailed discussion for intraslabe seismicity can be conducted by using the 3D CMT catalog. The seismic moments also directly affect the amplitudes of ground motions. The 3D CMT catalog allows us to directly conduct the precise forward and inverse modeling of long-period ground motion without adjusting source models, which have been typically applied in the cases using the 1D CMT catalog. We also conducted long-period ground motion simulations using our 3D CMT solutions to evaluate the reproducibility of long-period ground motions at stations within the Kanto Basin. The simulations of our 3D CMT solutions well-reproduced observed ground motions for periods longer than 10 s, even at stations within the Kanto Basin. The reproducibility of simulations was improved from those using solutions in the 1D catalog.


2020 ◽  
Author(s):  
Shunsuke Takemura ◽  
Kazuo Yoshimoto ◽  
Katsuhiko Shiomi

Abstract We conducted centroid moment tensor (CMT) inversions of moderate (Mw 4.5–6.5) earthquakes in the Kanto region, Japan, using a local three-dimensional (3D) model. We then investigated the effects of our 3D CMT solutions on long-period ground motion simulations. Grid search CMT inversions were conducted using displacement seismograms for the periods of 25–100 s. By comparing our 3D CMT solutions with those from the local one-dimensional (1D) catalog, we found that our 3D CMT inversion systematically provides magnitudes smaller than those in the 1D catalog. The Mw differences between 3D and 1D catalogs tend to be significant for earthquakes within the oceanic slab. By comparing the ground motion simulations of the 1D and 3D velocity models, we confirmed that the observed Mw differences could be explained by the differences in the rigidity structures around the source regions in the two models. The 3D velocity structures (especially oceanic crust and mantle) are important for estimating seismic moments in intraslab earthquakes. The seismic moments directly affect the amplitudes of ground motions. Thus, 3D CMT solutions are essential for precise forward and inverse modeling of long-period ground motion. We also conducted long-period ground motion simulations using our 3D CMT solutions to evaluate the reproducibility of long-period ground motions at stations within the Kanto Basin. The simulations of our 3D CMT solutions well-reproduced observed ground motions for periods longer than 10 s, even at stations within the Kanto Basin. The reproducibility of simulations using our 3D CMT solutions was better than those based on the solutions in the 1D catalog.


Sign in / Sign up

Export Citation Format

Share Document