pioneer neurons
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 2)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12386
Author(s):  
Elizaveta Fofanova ◽  
Tatiana D. Mayorova ◽  
Elena E. Voronezhskaya

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Davide Cavalieri ◽  
Alexandra Angelova ◽  
Anas Islah ◽  
Catherine Lopez ◽  
Marco Bocchio ◽  
...  

Cellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the murine hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morphophysiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early- and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing and cFos staining in mice, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is also partly determined at the earliest steps of development.


2021 ◽  
Author(s):  
Ana Lopez-Mengual ◽  
Miriam Segura-Feliu ◽  
Raimon Sunyer ◽  
Hector Sanz-Fraile ◽  
Jorge Otero ◽  
...  

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These pioneer neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the neocortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are also modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.


2021 ◽  
Author(s):  
Elizaveta Fofanova ◽  
Tatiana Mayorova ◽  
Elena Voronezhskaya

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.


2021 ◽  
Author(s):  
Davide Cavalieri ◽  
Alexandra Angelova ◽  
Anas Islah ◽  
Catherine Lopez ◽  
Agnes Baude ◽  
...  

AbstractCellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morpho-physiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early-and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing and cFos staining, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is significantly predetermined at the earliest steps of development.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Suman Kumar ◽  
Sharat Chandra Tumu ◽  
Conrad Helm ◽  
Harald Hausen

Abstract Background Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus. Results We performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 h postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d221), which after 7 cleavages starts expressing Neurogenin, Acheate-Scute and NeuroD. Conclusions We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. We suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.


2020 ◽  
Author(s):  
Elizaveta Fofanova ◽  
Tatiana Mayorova ◽  
Elena Voronezhskaya

Abstract BackgroundThe structure and development of the nervous system in Lophotrochozoa species is of the most important questions for comparative neurobiology. During the last decade the number of comprehensive studies on the development of serotonergic and FMRFamidergic systems has been skyrocketing. However, the detailed research of the earliest events of Polychaeta neurogenesis is still sparce. Polychaeta is a huge taxon within Lophotrochozoa. Its representatives are widely used as model systems in developmental and physiological investigations. Dinophilidae is a unique Polychaeta group. Its representatives combine morphological traits of different lophotrochozoan taxa. Moreover, adult dinophilids demonstrate morphological similarity to a trochophore larva. This similarity may be associated with either archaic origin of this group or neoteny. The main goal of our study is to provide a detailed description of the earliest events in Dinophilus neurogenesis. These data might improve our understanding of Polychaeta development and evolution.ResultsWe have studied the earliest events in nervous system development in two relative species D. gyrociliatus and D. taeniatus using immunochemical labelling of serotonin, FMRF-amide related peptides, and acetylated tubulin. We used external ciliation as marker for staging. Both species go through the same developmental stages: prototroch, ventral ciliary field and ciliary bands. In both species the first neurons differenciate revealed by anti alpha-acetylated tubulin antibodies only and show no reaction with 5-HT or FMRFa antibodies. These neurons located at the anterior and posterior parts of the embryo in both species. In D. taeniatus embryons the anterior cell is transient and disappear just after head neuropil is constructed. On the contrary, in D. gyrociliatus embryos the anterior cell is not transient and remains at the same position during the whole life span of the specimen. Caudal cell is present during the whole embryogenesis in both species. Neurites of these early neurons surround the stomadeum and constitute anlagen of paired ventro-lateral longitudinal bundles. During the development the number of neurites increases and they form compact head neuropil, paired ventro-lateral and lateral longitudinal bundles, unpaired medial longitudinal bundle and transverse commissures in ventral hyposphere. Serotonin- and FMRFamide-immunoreactive neurons differentiate adjacent to ventro-lateral bundles and head neuropil, respectively, after the establishment of main structures of the nervous system at the ventral ciliary field and ciliary bands stages. Processes of serotonin-, FMRFamide- immunopositive neurons constitute the small portion of tubulin immunopositive neuropil at all described stages.ConclusionsWe announce a detailed data on the earliest events in D. gyrociliatus and D. taeniatus neurodevelopment based on anti-acetylated tubulin, serotonin, and FMRFamide-like immuno labeling. The first nerve elements demonstrate no 5-HT-IR and no FMRFa-IR, which differs from the most Polychaetes and even Lophotrochozoans, investigated so far. Moreover, these animals do not have a typical apical organ (or perhaps do not have it at all) and the pioneer neurons of D.gyrociliatus are also peculiar in that they join the definitive nervous system unlike other lophotrochozoans where pioneer nerons are transient. Thus, Dinophilus neurogenesis demonstrates a variation of common scheme. The reported study was funded by RFBR, project number 19-3460040.


2020 ◽  
Author(s):  
Suman Kumar ◽  
Sharat Chandra Tumu ◽  
Conrad Helm ◽  
Harald Hausen

Abstract Background Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus . Results Here, we performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 hours postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d 221 ), which after 7 cleavages starts expressing Neurogenin , Achaete-Scute and NeuroD . Conclusions We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. The specification of the relevant neurons starts very early and we suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karsten Bode ◽  
Lena Nolte ◽  
Hannes Kamin ◽  
Michael Desens ◽  
Arthur Ulmann ◽  
...  

2020 ◽  
Author(s):  
Suman Kumar ◽  
Sharat Chandra Tumu ◽  
Conrad Helm ◽  
Harald Hausen

Abstract Background: Nervous system development is an interplay of many processes: the formation of individual neurons which depends on whole-body and local patterning processes and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the early steps of nervous system development in the annelid Malacoceros fuliginosus.Results: We find that the first pioneer neurons are already in place in the anterior and posterior pole when broad neurogenesis is just starting. They do not express serotonin or FMRFamide which are commonly used markers in studies on nervous system architecture. A single posterior neuron prefigures the main course of the ventral nerve cord and this mode is probably ancestral for majority of annelids. Notably, none of the studied sox and proneural genes, which are commonly involved in the generation of neurons, is expressed by this important neuron. The only transcription factor we found expressed is Brn3, which likely acts on a low hierarchical level.Conclusions: We propose that the annelid ventral nerve cord pioneer neuron follows a highly divergent course of neurogenesis. The lack of Sox and proneural transcription factors, which are usually under control of patterning cell-extrinsic factors suggest a major influence of inherited cell-intrinsic properties on the development of this cell. Though cell-autonomous specification is generally an important pathway in the early development of spirally cleaving animals, its relevance for nervous system development is poorly understood. Our data suggest that closer investigation of the specification of pioneer neurons in animals featuring spiral cleavage will be highly informative to obtain a better understanding of how nervous systems form and evolve.


Sign in / Sign up

Export Citation Format

Share Document