wide bandgap materials
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7081
Author(s):  
Daniel Araujo ◽  
Mariko Suzuki ◽  
Fernando Lloret ◽  
Gonzalo Alba ◽  
Pilar Villar

Progress in power electronic devices is currently accepted through the use of wide bandgap materials (WBG). Among them, diamond is the material with the most promising characteristics in terms of breakdown voltage, on-resistance, thermal conductance, or carrier mobility. However, it is also the one with the greatest difficulties in carrying out the device technology as a result of its very high mechanical hardness and smaller size of substrates. As a result, diamond is still not considered a reference material for power electronic devices despite its superior Baliga’s figure of merit with respect to other WBG materials. This review paper will give a brief overview of some scientific and technological aspects related to the current state of the main diamond technology aspects. It will report the recent key issues related to crystal growth, characterization techniques, and, in particular, the importance of surface states aspects, fabrication processes, and device fabrication. Finally, the advantages and disadvantages of diamond devices with respect to other WBG materials are also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng-Hsin Chen ◽  
Cheng-Wei Yen ◽  
Chia-Chun Guo ◽  
Vin-Cent Su ◽  
Chieh-Hsiung Kuan ◽  
...  

AbstractThe growth of wide-bandgap materials on patterned substrates has revolutionized the means with which we can improve the light output power of gallium nitride (GaN) light-emitting diodes (LEDs). Conventional patterned structure inspection usually relies on an expensive vacuum-system-required scanning electron microscope (SEM) or optical microscope (OM) with bulky objectives. On the other hand, ultra-thin metasurfaces have been widely used in widespread applications, especially for converging lenses. In this study, we propose newly developed, highly efficient hexagon-resonated elements (HREs) combined with gingerly selected subwavelength periods of the elements for the construction of polarization-insensitive metalenses of high performance. Also, the well-developed fabrication techniques have been employed to realize the high-aspect-ratio metalenses working at three distinct wavelengths of 405, 532, and 633 nm with respective diffraction-limited focusing efficiencies of 93%, 86%, and 92%. The 1951 United States Air Force (USAF) test chart has been chosen to characterize the imaging capability. All of the images formed by the 405-nm-designed metalens show exceptional clear line features, and the smallest resolvable features are lines with widths of 870 nm. To perform the inspection capacity for patterned substrates, for the proof of concept, a commercially available patterned sapphire substrate (PSS) for the growth of the GaN LEDs has been opted and carefully examined by the high-resolution SEM system. With the appropriately chosen metalenses at the desired wavelength, the summits of structures in the PSS can be clearly observed in the images. The PSS imaging qualities taken by the ultra-thin and light-weight metalenses with a numerical aperture (NA) of 0.3 are comparable to those seen by an objective with the NA of 0.4. This work can pioneer semiconductor manufacturing to choose the polarization-insensitive GaN metalenses to inspect the patterned structures instead of using the SEM or the bulky and heavy conventional objectives.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 677
Author(s):  
Javier Ballestín-Fuertes ◽  
Jesús Muñoz-Cruzado-Alba ◽  
José F. Sanz-Osorio ◽  
Erika Laporta-Puyal

At present, the energy transition is leading to the replacement of large thermal power plants by distributed renewable generation and the introduction of different assets. Consequently, a massive deployment of power electronics is expected. A particular case will be the devices destined for urban environments and smart grids. Indeed, such applications have some features that make wide bandgap (WBG) materials particularly relevant. This paper analyzes the most important features expected by future smart applications from which the characteristics that their power semiconductors must perform can be deduced. Following, not only the characteristics and theoretical limits of wide bandgap materials already available on the market (SiC and GaN) have been analyzed, but also those currently being researched as promising future alternatives (Ga2O3, AlN, etc.). Finally, wide bandgap materials are compared under the needs determined by the smart applications, determining the best suited to them. We conclude that, although SiC and GaN are currently the only WBG materials available on the semiconductor portfolio, they may be displaced by others such as Ga2O3 in the near future.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 635
Author(s):  
Idriss Abid ◽  
Jash Mehta ◽  
Yvon Cordier ◽  
Joff Derluyn ◽  
Stefan Degroote ◽  
...  

High power electronics using wide bandgap materials are maturing rapidly, and significant market growth is expected in a near future. Ultra wide bandgap materials, which have an even larger bandgap than GaN (3.4 eV), represent an attractive choice of materials to further push the performance limits of power devices. In this work, we report on the fabrication of AlN/AlGaN/AlN high-electron mobility transistors (HEMTs) using 50% Al-content on the AlGaN channel, which has a much wider bandgap than the commonly used GaN channel. The structure was grown by metalorganic chemical vapor deposition (MOCVD) on AlN/sapphire templates. A buffer breakdown field as high as 5.5 MV/cm was reported for short contact distances. Furthermore, transistors have been successfully fabricated on this heterostructure, with low leakage current and low on-resistance. A remarkable three-terminal breakdown voltage above 4 kV with an off-state leakage current below 1 μA/mm was achieved. A regrown ohmic contact was used to reduce the source/drain ohmic contact resistance, yielding a drain current density of about 0.1 A/mm.


Sign in / Sign up

Export Citation Format

Share Document