wildlife reservoirs
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1436
Author(s):  
Carly Marie Malavé ◽  
Jaime Lopera-Madrid ◽  
Lex Guillermo Medina-Magües ◽  
Tonie Ellen Rocke ◽  
Jorge Emilio Osorio

Rabies is an ancient disease that is responsible for approximately 59,000 human deaths annually. Bats (Order Chiroptera) are thought to be the original hosts of rabies virus (RABV) and currently account for most rabies cases in wildlife in the Americas. Vaccination is being used to manage rabies in other wildlife reservoirs like fox and raccoon, but no rabies vaccine is available for bats. We previously developed a recombinant raccoonpox virus (RCN) vaccine candidate expressing a mosaic glycoprotein (MoG) gene that protected mice and big brown bats when challenged with RABV. In this study, we developed two new recombinant RCN candidates expressing MoG (RCN-tPA-MoG and RCN-SS-TD-MoG) with the aim of improving RCN-MoG. We assessed and compared in vitro expression, in vivo immunogenicity, and protective efficacy in vaccinated mice challenged intracerebrally with RABV. All three candidates induced significant humoral immune responses, and inoculation with RCN-tPA-MoG or RCN-MoG significantly increased survival after RABV challenge. These results demonstrate the importance of considering molecular elements in the design of vaccines, and that vaccination with either RCN-tPA-MoG or RCN-MoG confers adequate protection from rabies infection, and either may be a sufficient vaccine candidate for bats in future work.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1283
Author(s):  
Denis S. Azevedo ◽  
José Lucas C. Duarte ◽  
Carlos Felipe G. Freitas ◽  
Karoline L. Soares ◽  
Mônica S. Sousa ◽  
...  

The most recent emerging infectious diseases originated in animals, mainly in wildlife reservoirs. Mutations and recombination events mediate pathogen jumps between host species. The close phylogenetic relationship between humans and non-human primates allows the transmission of pathogens between these species. These pathogens cause severe impacts on public health and impair the conservation of habituated or non-habituated wild-living apes. Constant exposure of great apes to human actions such as hunting, deforestation, the opening of roads, and tourism, for example, contributes to increased interaction between humans and great apes. In spite of several studies emphasizing the risks of pathogen transmission between animals and humans, outbreaks of the reverse transmission of infectious agents threatening wildlife still occur on the African continent. In this context, measures to prevent the emergence of new diseases and conservation of primate species must be based on the One Health concept; that is, they must also ensure the monitoring of the environment and involve political and social aspects. In this article, we review and discuss the anthropological aspects of the transmission of diseases between people and wild primates and discuss new anthropozoonotic diseases in great apes in Africa from studies published between 2016 and 2020. We conclude that the health of great apes also depends on monitoring the health of human populations that interact with these individuals.


Science ◽  
2021 ◽  
Vol 374 (6563) ◽  
pp. 35-36
Author(s):  
Katie Hampson ◽  
Daniel Haydon

2021 ◽  
Vol 9 (8) ◽  
pp. 1629
Author(s):  
Claudia Perea ◽  
Giovanna Ciaravino ◽  
Tod Stuber ◽  
Tyler C. Thacker ◽  
Suelee Robbe-Austerman ◽  
...  

The high-resolution WGS analyses of MTBC strains have provided useful insight for determining sources of infection for animal tuberculosis. In Spain, tuberculosis in livestock is caused by Mycobacterium bovis and Mycobacterium caprae, where wildlife reservoirs play an important role. We analyzed a set of 125 M. bovis isolates obtained from livestock and wildlife from Catalonia to investigate strain diversity and identify possible sources and/or causes of infection. Whole-genome SNP profiles were used for phylogenetic reconstruction and pairwise SNP distance analysis. Additionally, SNPs were investigated to identify virulence and antimicrobial resistance factors to investigate clade-specific associations. Putative transmission clusters (≤12 SNPs) were identified, and associated epidemiological metadata were used to determine possible explanatory factors for transmission. M. bovis distribution was heterogeneous, with 7 major clades and 21 putative transmission clusters. In order of importance, the explanatory factors associated were proximity and neighborhood, residual infection, livestock-wildlife interaction, shared pasture, and movement. Genes related to lipid transport and metabolism showed the highest number of SNPs. All isolates were pyrazinamide resistant, and five were additionally resistant to isoniazid, but no clade-specific associations could be determined. Our findings highlight the importance of high-resolution molecular surveillance to monitor bovine tuberculosis dynamics in a low-prevalence setting.


2021 ◽  
Vol 9 (6) ◽  
pp. 1256
Author(s):  
Teresa Letra Mateus ◽  
Maria João Gargaté ◽  
Anabela Vilares ◽  
Idalina Ferreira ◽  
Manuela Rodrigues ◽  
...  

Cystic echinococcosis (CE) is a zoonosis that is prevalent worldwide. It is considered endemic in Portugal but few studies have been performed on Echinococcus granulosus sensu lato and their hosts. In this study, CE cysts are reported for the first time in a free-living wild boar (Sus scrofa) in Portugal. The presence of the metacestodes in the liver of the wild boar was identified by morphological features, microscopic examination and molecular analysis. The sequencing of part of the DNA nuclear ribosomal internal transcribed spacer-1 (ITS-1) region revealed a G5 genotype that presently corresponds to Echinococcus ortleppi. This is the first report of E. ortleppi in Portugal and to the best of the authors’ knowledge, in Europe. These results suggest that wild boar may be a host of CE, namely, crossing the livestock–wildlife interface, which has important public health implications. Wildlife reservoirs must be taken into account as CE hosts and surveillance of game as well as health education for hunters should be implemented using a One Health approach, with implementation of feasible and tailor-made control strategies, namely, proper elimination of byproducts in the field.


2021 ◽  
Vol 6 (2) ◽  
pp. 87
Author(s):  
Natalie Rudenko ◽  
Maryna Golovchenko

Transmission of the causative agents of numerous infectious diseases might be potentially conducted by various routes if this is supported by the genetics of the pathogen. Various transmission modes occur in related pathogens, reflecting a complex process that is specific for each particular host–pathogen system that relies on and is affected by pathogen and host genetics and ecology, ensuring the epidemiological spread of the pathogen. The recent dramatic rise in diagnosed cases of Lyme borreliosis might be due to several factors: the shifting of the distributional range of tick vectors caused by climate change; dispersal of infected ticks due to host animal migration; recent urbanization; an increasing overlap of humans’ habitat with wildlife reservoirs and the environment of tick vectors of Borrelia; improvements in disease diagnosis; or establishment of adequate surveillance. The involvement of other bloodsucking arthropod vectors and/or other routes of transmission (human-to-human) of the causative agent of Lyme borreliosis, the spirochetes from the Borrelia burgdorferi sensu lato complex, has been speculated to be contributing to increased disease burden. It does not matter how controversial the idea of vector-free spirochete transmission might seem in the beginning. As long as evidence of sexual transmission of Borrelia burgdorferi both between vertebrate hosts and between tick vectors exists, this question must be addressed. In order to confirm or refute the existence of this phenomenon, which could have important implications for Lyme borreliosis epidemiology, the need of extensive research is obvious and required.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 599
Author(s):  
Myndi G. Holbrook ◽  
Simon J. Anthony ◽  
Isamara Navarrete-Macias ◽  
Theo Bestebroer ◽  
Vincent J. Munster ◽  
...  

Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of spillover events or where a human–reservoir interface should be closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay. Representatives from the four coronavirus genera (α-CoVs, β-CoVs, γ-CoVs and δ-CoVs) were tested and all of the in-house CoVs were detected using this assay. After comparing both assays, we found that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect, monitor and track CoVs to enhance viral surveillance in reservoir hosts.


2021 ◽  
Author(s):  
Colin J Carlson ◽  
Sarah N Bevins ◽  
Boris V Schmid

After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we develop a new method to detect the signal of climate change in infectious disease distributions, and test whether plague reservoirs and spillover risk have shifted since 1950. We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs - with suitability increasing up to 40% in some places - and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 186 ◽  
Author(s):  
Gabriela González-Espinoza ◽  
Vilma Arce-Gorvel ◽  
Sylvie Mémet ◽  
Jean-Pierre Gorvel

Brucella is an intracellular bacterium that causes abortion, reproduction failure in livestock and leads to a debilitating flu-like illness with serious chronic complications if untreated in humans. As a successful intracellular pathogen, Brucella has developed strategies to avoid recognition by the immune system of the host and promote its survival and replication. In vivo, Brucellae reside mostly within phagocytes and other cells including trophoblasts, where they establish a preferred replicative niche inside the endoplasmic reticulum. This process is central as it gives Brucella the ability to maintain replicating-surviving cycles for long periods of time, even at low bacterial numbers, in its cellular niches. In this review, we propose that Brucella takes advantage of the environment provided by the cellular niches in which it resides to generate reservoirs and disseminate to other organs. We will discuss how the favored cellular niches for Brucella infection in the host give rise to anatomical reservoirs that may lead to chronic infections or persistence in asymptomatic subjects, and which may be considered as a threat for further contamination. A special emphasis will be put on bone marrow, lymph nodes, reproductive and for the first time adipose tissues, as well as wildlife reservoirs.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Kingsley Uchenna Ozioko ◽  
Chris Ikem Okoye ◽  
Patience Obiageli Ubachukwu ◽  
Raymond Awudu Agbu ◽  
Bede Izuchukwu Ezewudo ◽  
...  

Abstract Background Wildlife reservoirs not only act as a source of infection for vectors but also serve as hosts for the vectors themselves, supporting their populations. Their public health significance in developing countries is of growing importance as a result of zoonotic and enzootic diseases associated with the pathogens they transmit. Therefore, a study was carried out to determine the prevalence of ectoparasites of wild game in Nsukka, southeast Nigeria. Physical examinations were carried out on 143 wildlife, and laboratory identification was employed on the ectoparasites. The collected ectoparasites were identified in the laboratory using literature and with the help of a taxonomist. Results Out of the 143 game examined, 114 was infected with at least one parasite representing about 98.6% of an infestation. Among the parasites identified, Amblyomma spp. showed the highest prevalence of 24.5% at 95% confidential intervals of CI (1.45–3.19)–24.5% (p ≤ 0.05). No difference was observed in the prevalence of the ectoparasites according to sex, except for Ixodes holocyclus. Similarly, no difference was observed in prevalence with reference to age except for Rhipicephalus spp. and Polyplax spinulosa which showed differences. Conclusions The present study provides basic data about the most prevalent ectoparasitic arthropod among game in Nsukka, southeast Nigeria, which requires an evaluation of its zoonotic control measures. This work can elicit the risk of possible transmission of some zoonotic and enzootic diseases via game. Improving awareness among local people and bushmeat dealers about the risk of contracting a vector-borne disease through wildlife is crucial.


Sign in / Sign up

Export Citation Format

Share Document