gamma frequency
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 116)

H-INDEX

43
(FIVE YEARS 4)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jing Ren ◽  
Qun Yao ◽  
Minjie Tian ◽  
Feng Li ◽  
Yueqiu Chen ◽  
...  

Abstract Background Migraine is a common and disabling primary headache, which is associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study aimed to investigate the neural network during neutral, positive, and negative emotional stimuli in the migraine patients. Methods A total of 24 migraine patients and 24 age- and sex-matching healthy controls were enrolled in this study. Neuromagnetic brain activity was recorded using a whole-head magnetoencephalography (MEG) system upon exposure to human facial expression stimuli. MEG data were analyzed in multi-frequency ranges from 1 to 100 Hz. Results The migraine patients exhibited a significant enhancement in the effective connectivity from the prefrontal lobe to the temporal cortex during the negative emotional stimuli in the gamma frequency (30–90 Hz). Graph theory analysis revealed that the migraine patients had an increased degree and clustering coefficient of connectivity in the delta frequency range (1–4 Hz) upon exposure to positive emotional stimuli and an increased degree of connectivity in the delta frequency range (1–4 Hz) upon exposure to negative emotional stimuli. Clinical correlation analysis showed that the history, attack frequency, duration, and neuropsychological scales of the migraine patients had a negative correlation with the network parameters in certain frequency ranges. Conclusions The results suggested that the individuals with migraine showed deviant effective connectivity in viewing the human facial expressions in multi-frequencies. The prefrontal-temporal pathway might be related to the altered negative emotional modulation in migraine. These findings suggested that migraine might be characterized by more universal altered cerebral processing of negative stimuli. Since the significant result in this study was frequency-specific, more independent replicative studies are needed to confirm these results, and to elucidate the neurocircuitry underlying the association between migraine and emotional conditions.


2022 ◽  
Author(s):  
Saman Abbaspoor ◽  
Ahmed Hussin ◽  
Kari L Hoffman

Nested hippocampal oscillations in the rodent gives rise to temporal coding that may underlie learning, memory, and decision making. Theta/gamma coupling in rodent CA1 occurs during exploration and sharp-wave ripples during quiescence. Whether these oscillatory regimes extend to primates is less clear. We therefore sought to identify correspondences in frequency bands, nesting, and behavioral coupling taken from macaque hippocampus. We found that, in contrast to the rodent, theta and gamma frequency bands in macaque CA1 were segregated by behavioral states. Beta/gamma (15-70Hz) had greater power during visual search while theta (7-10 Hz) dominated during quiescence. Moreover, delta/theta (3-8 Hz) amplitude was strongest when beta2/slow gamma (20-35 Hz) amplitude was weakest, though the low frequencies coupled with higher, ripple frequencies (60-150 Hz). The distribution of spike-field coherence revealed three peaks matching the 3-10 Hz, 20-30 Hz and 60-150 Hz bands; however, the low frequency effects were primarily due to sharp-wave ripples. Accordingly, no intrinsic theta spiking rhythmicity was apparent. These results support a role for beta2/slow gamma modulation in CA1 during active exploration in the primate that is decoupled from theta oscillations. These findings diverge from the rodent oscillatory canon and call for a shift in focus and frequency when considering the primate hippocampus.


2022 ◽  
Vol 71 ◽  
pp. 103139
Author(s):  
Igor Shepelev ◽  
Valery Kiroy ◽  
Igor Scherban ◽  
Petr Kosenko ◽  
Alexey Smolikov ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mayumi Watanabe ◽  
Akira Uematsu ◽  
Joshua P. Johansen

AbstractThe ability to extinguish aversive memories when they are no longer associated with danger is critical for balancing survival with competing adaptive demands. Previous studies demonstrated that the infralimbic cortex (IL) is essential for extinction of learned fear, while neural activity in the prelimbic cortex (PL) facilitates fear responding and is negatively correlated with the strength of extinction memories. Though these adjacent regions in the prefrontal cortex maintain mutual synaptic connectivity, it has been unclear whether PL and IL interact functionally with each other during fear extinction learning. Here we addressed this question by recording local field potentials (LFPs) simultaneously from PL and IL of awake behaving rats during extinction of auditory fear memories. We found that LFP power in the fast gamma frequency (100–200 Hz) in both PL and IL regions increased during extinction learning. In addition, coherency analysis showed that synchronization between PL and IL in the fast gamma frequency was enhanced over the course of extinction. These findings support the hypothesis that interregional interactions between PL and IL increase as animals extinguish aversive memories.


2021 ◽  
Vol 17 (S9) ◽  
Author(s):  
Diane Chan ◽  
Ho‐Jun Suk ◽  
Brennan L Jackson ◽  
Noah Milman ◽  
Danielle Stark ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Florinda Ferreri ◽  
Andrea Guerra ◽  
Luca Vollero ◽  
David Ponzo ◽  
Sara Määtta ◽  
...  

Background: Early and affordable identification of subjects with amnestic mild cognitive impairment (aMCI) who will convert to Alzheimer’s disease (AD) is a major scientific challenge.Objective: To investigate the neurophysiological hallmarks of sensorimotor cortex function in aMCI under the hypothesis that some may represent the plastic rearrangements induced by neurodegeneration, hence predictors of future conversion to AD. We sought to determine (1) whether the sensorimotor network shows peculiar alterations in patients with aMCI and (2) if sensorimotor network alterations predict long-term disease progression at the individual level.Methods: We studied several transcranial magnetic stimulation (TMS)-electroencephalogram (EEG) parameters of the sensorimotor cortex in a group of patients with aMCI and followed them for 6 years. We then identified aMCI who clinically converted to AD [prodromal to AD-MCI (pAD-MCI)] and those who remained cognitively stable [non-prodromal to AD-MCI (npAD-MCI)].Results: Patients with aMCI showed reduced motor cortex (M1) excitability and disrupted EEG synchronization [decreased intertrial coherence (ITC)] in alpha, beta and gamma frequency bands compared to the control subjects. The degree of alteration in M1 excitability and alpha ITC was comparable between pAD-MCI and npAD-MCI. Importantly, beta and gamma ITC impairment in the stimulated M1 was greater in pAD-MCI than npAD-MCI. Furthermore, an additional parameter related to the waveform shape of scalp signals, reflecting time-specific alterations in global TMS-induced activity [stability of the dipolar activity (sDA)], discriminated npAD-MCI from MCI who will convert to AD.Discussion: The above mentioned specific cortical changes, reflecting deficit of synchronization within the cortico-basal ganglia-thalamo-cortical loop in aMCI, may reflect the pathological processes underlying AD. These changes could be tested in larger cohorts as neurophysiological biomarkers of AD.


2021 ◽  
Author(s):  
Kenneth J Pope ◽  
Trent W Lewis ◽  
Sean P Fitzgibbon ◽  
Azin S Janani ◽  
Tyler S Grummett ◽  
...  

Objective: In publications on the electroencephalographic (EEG) features of psychoses and other disorders, various methods are utilised to diminish electromyogram (EMG) contamination. The extent of residual EMG contamination using these methods has not been recognised. Here, we seek to emphasise the extent of residual EMG contamination of EEG. Methods: We compared scalp electrical recordings after applying different EMG-pruning methods with recordings of EMG-free data from 6 fully-paralysed healthy subjects. We calculated the ratio of the power of pruned, normal scalp electrical recordings in the 6 subjects, to the power of unpruned recordings in the same subjects when paralysed. We produced contamination graphs for different pruning methods. Results: EMG contamination exceeds EEG signals progressively more as frequencies exceed 25 Hz and with distance from the vertex. In contrast, Laplacian signals are spared in central scalp areas, even to 100 Hz. Conclusion: Given probable EMG contamination of EEG in psychiatric and other studies, few findings on beta- or gamma-frequency power can be relied upon. Based on the effectiveness of current methods of EEG de-contamination, investigators should be able to re-analyse recorded data, re-evaluate conclusions from high frequency EEG data and be aware of limitations of the methods.


2021 ◽  
Vol 11 (11) ◽  
pp. 1532
Author(s):  
Won-Hyeong Jeong ◽  
Wang-In Kim ◽  
Jin-Won Lee ◽  
Hyeng-Kyu Park ◽  
Min-Keun Song ◽  
...  

Transcranial alternating current stimulation (tACS) is a neuromodulation procedure that is currently studied for the purpose of improving cognitive function in various diseases. A few studies have shown positive effects of tACS in Alzheimer’s disease (AD). However, the mechanism underlying tACS has not been established. The purpose of this study was to investigate the mechanism of tACS in five familial AD mutation (5xFAD) mouse models. We prepared twenty 4-month-old mice and divided them into four groups: wild-type mice without stimulation (WT-NT group), wild-type mice with tACS (WT-T group), 5xFAD mice without stimulation (AD-NT group), and 5xFAD mice with tACS (AD-T group). The protocol implemented was as follows: gamma frequency 200 μA over the bilateral frontal lobe for 20 min over 2 weeks. The following tests were conducted: excitatory postsynaptic potential (EPSP) recording, Western blot analysis (cyclic AMP response element-binding (CREB) proteins, phosphorylated CREB proteins, brain-derived neurotrophic factor, and parvalbumin) to examine the synaptic plasticity. The EPSP was remarkably increased in the AD-T group compared with in the AD-NT group. In the Western blot analysis, the differences among the groups were not significant. Hence, tACS can affect the long-lasting enhancement of synaptic transmission in mice models of AD.


2021 ◽  
Author(s):  
Jingcheng Shi ◽  
Aarron J Phensy ◽  
Vikaas Singh Sohal

Neural synchronization at gamma (~40 Hz) frequencies is believed to contribute to brain function and be deficient in disorders including Alzheimer's disease and schizophrenia. Gamma-frequency sensory stimulation has been proposed as a non-invasive treatment for deficient gamma synchrony and associated cognitive deficits, and has been shown to be effective in mouse models of Alzheimer's disease. However, both the mechanism and applicability of this approach remain unclear. Here we tested this approach using mutant (Dlx5/6+/-) mice which have deficits in gamma synchrony and the ability to learn to shift between rules which use different types of cues to indicate reward locations. 40 Hz auditory stimulation rescues rule shifting in Dlx5/6+/- mice. However, this improvement does not outlast the period of stimulation, and is not associated with normalized gamma synchrony, measured using genetically encoded voltage indicators. These results show how gamma-frequency sensory stimulation may improve behavior without fully restoring normal circuit function.


Sign in / Sign up

Export Citation Format

Share Document