handoff latency
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5261
Author(s):  
Deok-Won Yun ◽  
Won-Cheol Lee

Edge computing offers a promising paradigm for implementing the industrial Internet of things (IIoT) by offloading intensive computing tasks from resource constrained machine type devices to powerful edge servers. However, efficient spectrum resource management is required to meet the quality of service requirements of various applications, taking into account the limited spectrum resources, batteries, and the characteristics of available spectrum fluctuations. Therefore, this study proposes intelligent dynamic spectrum resource management consisting of learning engines that select optimal backup channels based on history data, reasoning engines that infer idle channels based on backup channel lists, and transmission parameter optimization engines based genetic algorithm using interference analysis in time, space and frequency domains. The performance of the proposed intelligent dynamic spectrum resource management was evaluated in terms of the spectrum efficiency, number of spectrum handoff, latency, energy consumption, and link maintenance probability according to the backup channel selection technique and the number of IoT devices and the use of transmission parameters optimized for each traffic environment. The results demonstrate that the proposed method is superior to existing spectrum resource management functions.


2021 ◽  
Vol 11 (9) ◽  
pp. 4064
Author(s):  
Muktar Hussaini ◽  
Muhammad Ali Naeem ◽  
Byung-Seo Kim

Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, the architecture is still facing challenges for managing content producer mobility. Despite the efforts of many researchers that curtailed the high handoff latency and signaling overhead, there are still some prominent challenges, such as non-optimal routing path, long delay for data delivery and unnecessary interest packet losses. This paper proposed a solution to minimize unnecessary interest packet losses, delay and provide data path optimization when the mobile producer relocates by using mobility update, broadcasting and best route strategies. The proposed solution is implemented, evaluated and benchmarked with an existing Kite solution. The performance analysis result revealed that our proposed Optimal Producer Mobility Support Solution (OPMSS) minimizes the number of unnecessary interest packets lost on average by 30%, and an average delay of 25% to 30%, with almost equal and acceptable signaling overhead costs. Furthermore, it provides a better data packet delivery route than the Kite solution.


Author(s):  
Saleh Ali Alomari ◽  
Mowafaq Salem Alzboon ◽  
Mohammad Subhi Al-Batah ◽  
Belal Zaqaibeh

The services of the Video on Demand (VoD) are currently based on the developments of the technology of the digital video and the network’s high speed. The files of the video are retrieved from many viewers according to the permission, which is given by VoD services. The remote VoD servers conduct this access. A server permits the user to choose videos anywhere/anytime in order to enjoy a unified control of the video playback. In this paper, a novel adaptive method is produced in order to deliver various facilities of the VoD to all mobile nodes that are moving within several networks. This process is performed via mobility modules within the produced method since it applies a seamless playback technique for retrieving the facilities of the VoD through environments of heterogeneous networks. The main components comprise two servers, which are named as the GMF and the LMF. The performance of the simulation is tested for checking clients’ movements through different networks with different sizes and speeds, which are buffered in the storage. It is found to be proven from the results that the handoff latency has various types of rapidity. The method applies smooth connections and delivers various facilities of the VoD. Meantime, the mobile device transfers through different networks. This implies that the system transports video segments easily without encountering any notable effects.In the experimental analysis for the Slow movements mobile node handoff latency (8 Km/hour or 4 m/s) ,the mobile device’s speed reaches 4m/s, the delay time ranges from 1 to 1.2 seconds in the proposed system, while the MobiVoD system ranges from 1.1 to 1.5. In the proposed technique reaches 1.1026 seconds forming the required time of a mobile device that is switching from a single network to its adjacent one. while the handoff termination average in the MobiVoD reaches 1.3098 seconds. Medium movement mobile node handoff latency (21 Km/ hour or 8 m/s) The average handoff time for the proposed system reaches 1.1057 seconds where this implies that this technique can seamlessly provide several segments of a video segments regardless of any encountered problems. while the average handoff time for the MobiVoD reaches 1.53006623 seconds. Furthermore, Fast movement mobile node handoff latency (390 Km/ hour or 20 m/s). The average time latency of the proposed technique reaches 1.0964 seconds, while the MobiVoD System reaches to 1.668225 seconds.


2020 ◽  
Vol 159 ◽  
pp. 175-185 ◽  
Author(s):  
Helga D. Balbi ◽  
Diego Passos ◽  
Ricardo C. Carrano ◽  
Luiz C.S. Magalhães ◽  
Célio V.N. Albuquerque

Author(s):  
Muktar Hussaini ◽  
Shahrudin Awang Nor ◽  
Amran Ahmad

Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility. However, content producer mobility is not supported fundamentally and faces many challenges such as, high handoff latency, signaling overhead cost and unnecessary Interest packet losses. Hence, many approaches indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach were proposed to address these problems. Mapping-based and control/data plane-based approach deployed servers for name resolution serveces to provide optimal data path after handoff, but introduces high handoff latency and signalling overhead cost. Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces sub-optimal or tiangular routing path. Therefore, there is needs to provide substantial producer mobility support that minimizes the handoff latency, signaling cost and improve data packets delivery via optimal path once a content producer relocates to new location. This paper proposed a scheme that provides optimal data path using mobility Interest packets and broadcasting strategy. Analytical investigation result shows that our proposed scheme outperforms existing approaches in terms of handoff latency, signaling cost and path optimization.


Author(s):  
Adnan J. Jabir

<p>Mobility management protocols are very essential in the new research area of Internet of Things (IoT) as the static attributes of nodes are no longer dominant in the current environment. Proxy MIPv6 (PMIPv6) protocol is a network-based mobility management protocol, where the mobility process is relied on the network entities, named, Mobile Access Gateways (MAGs) and Local Mobility Anchor (LMA). PMIPv6 is considered as the most suitable mobility protocol for WSN as it relieves the sensor nodes from participating in the mobility signaling. However, in PMIPv6, a separate signaling is required for each mobile node (MN) registration, which may increase the network signaling overhead and lead to increase the total handoff latency. The bulk binding approaches were used to enhance the mobility signaling for MNs which are moving together from one MAG to another by exchanging a single bulk binding update message. However, in some cases there might be several MNs move at the same time but among different MAGs. In this paper, a bulk registration scheme based on the clustered sensor PMIPv6 architecture is proposed to reduce the mobility signaling cost by creating a single bulk message for all MNs attached to the cluster. Our mathematical results show that the proposed bulk scheme enhances the PMIPv6 performance by reducing the total handoff latency.</p>


Author(s):  
Muktar Hussaini ◽  
Shahrudin Awang Nor ◽  
Amran Ahmad

<p>Named Data Networking is a consumer-driven network that supports content consumer mobility due to the nature of in-network catching. The catching suppressed unnecessary Interest packets losses by providing an immediate copy of the data and consumer-driven nature influencedthe mobile consumer to resend unsatisfied Interest packet immediately after the handoff. Once the producer moves to a new location, the name prefix changed automatically after handoff to the new router or point of attachment. The entire network lacks the knowledge of producer movement unless if the producer announces its new prefix to update the FIBs of intermediate routers. Lack of producer’s movement knowledge causes an increase of handoff latency, signaling overhead cost, Interests packets losses, poor utilization of bandwidth and packets delivery. Therefore, there is needs to provide substantial producer mobility support to minimize the handoff latency, handoff signaling overhead cost, reduce the unnecessary Interest packets loss to improve data packets delivery once a content producer relocated. In this paper, broadcasting strategy is introduced to facilitate the handoff procedures and update the intermediate routers about the producer movement. Hence, analytical investigation result of this paper addresses the deficiency of Kite scheme by minimizing handoff signaling cost and provides data path optimization after the handoff.<strong></strong></p>


2019 ◽  
Vol 7 (2) ◽  
pp. 575-588
Author(s):  
D. Sarddar ◽  
U. Ghosh ◽  
Rajat Pandit
Keyword(s):  

Author(s):  
Abhishek Majumder ◽  
Samir Nath

Handoff management of the users is one of the major issues wi-fi-based wireless LAN. The total handoff process can be divided into three phases, namely scanning, authentication, and re-association. If mobile client frequently changes its position while accessing internet, number of handoffs also increases proportionally. Frequent handoffs affect the quality of service of different wireless applications because of large handoff latency. Many schemes have been developed for reducing handoff delay. In this chapter, handoff management schemes have been classified based on the phase in which the scheme works. Thus, the techniques have been classified as scanning-based schemes, authentication-based schemes, and re-association-based schemes. This chapter also classifies the handoff schemes into two categories based on the number of radios used: single-radio-based handoff schemes and multi-radio-based handoff schemes. The schemes under each of the class have been discussed in detail. A comprehensive comparison of all the schemes has also been presented in this chapter.


Sign in / Sign up

Export Citation Format

Share Document