dynamic spectrum
Recently Published Documents


TOTAL DOCUMENTS

2008
(FIVE YEARS 323)

H-INDEX

68
(FIVE YEARS 9)

2022 ◽  
Vol 25 (3) ◽  
pp. 23-27
Author(s):  
Junfeng Junfeng Guan ◽  
Jitian Zhang ◽  
Ruochen Lu ◽  
Hyungjoo Seo ◽  
Jin Zhou ◽  
...  

The ever-increasing demand for wireless applications has resulted in an unprecedented radio frequency (RF) spectrum shortage. Ironically, at the same time, actual utilization of the spectrum is sparse in practice [1]. To exploit previously underutilized frequency bands to accommodate new unlicensed applications and achieve highly efficient usage of the spectrum, the Federal Communications Committee (FCC) has repurposed many frequency bands for dynamic spectrum sharing. This includes the 6 GHz band to be shared between Wi-Fi 6 and the incumbent users [2] as well as the 3.5 GHz Citizens Broadband Radio Service (CBRS) band [3].


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1309
Author(s):  
Keshvinder Singh Randhava ◽  
Mardeni Roslee ◽  
Zubaida Yusoff

Background: The exponential increase in pattern of vehicles on the roads demands a need to develop a vehicular infrastructure that may not only ease congestions and provide a better experience but also pivot the levels of safety among users. The development of wireless technology has made it convenient for machines, devices and vehicles to interact with one another. The efficacy of this wireless communications relies on utilising current and available technology to enable information to be shared efficiently. In the wake of the available advancement in wireless technology, a new dynamic spectrum management (DSM) in vehicle-to-vehicle (V2V) communication that coexists with the existing Long-Term Evolution (LTE) network to increase the throughput in V2V communication is proposed. This will provide some solutions to enable a more efficient vehicular infrastructure. Methods: This paper focuses on the utilization of DSM in V2V communications by selecting an appropriate frequency band through the selection of available licensed and unlicensed frequency bands for vehicles. Further investigations are done to identify the effect of interference in the dynamic spectrum by observing the path loss, SINR, and the throughput with various interfering users. Results: The results show that the performance of the proposed DSM augments a significant improvement in the overall throughput and the signal-to-interference-plus-noise ratio (SINR) value is reduced by up to 60% when compared to the fixed spectrum allocation. Conclusions: Although the dynamic spectrum is still affected by the interference from the existing cellular users, the throughput of the dynamic spectrum remains sufficient to transmit the information to other vehicles.


2021 ◽  
Vol 7 (4) ◽  
pp. 70-74
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2021 ◽  
Vol 7 (4) ◽  
pp. 67-70
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


Author(s):  
Taras Maksymyuk ◽  
Juraj Gazda ◽  
Madhusanka Liyanage ◽  
Longzhe Han ◽  
Bohdan Shubyn ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8052
Author(s):  
Irfan Jabandžić ◽  
Fadhil Firyaguna ◽  
Spilios Giannoulis ◽  
Adnan Shahid ◽  
Atri Mukhopadhyay ◽  
...  

With a constant increase in the number of deployed satellites, it is expected that the current fixed spectrum allocation in satellite communications (SATCOM) will migrate towards more dynamic and flexible spectrum sharing rules. This migration is accelerated due to the introduction of new terrestrial services in bands used by satellite services. Therefore, it is important to design dynamic spectrum sharing (DSS) solutions that can maximize spectrum utilization and support coexistence between a high number of satellite and terrestrial networks operating in the same spectrum bands. Several DSS solutions for SATCOM exist, however, they are mainly centralized solutions and might lead to scalability issues with increasing satellite density. This paper describes two distributed DSS techniques for efficient spectrum sharing across multiple satellite systems (geostationary and non-geostationary satellites with earth stations in motion) and terrestrial networks, with a focus on increasing spectrum utilization and minimizing the impact of interference between satellite and terrestrial segments. Two relevant SATCOM use cases have been selected for dynamic spectrum sharing: the opportunistic sharing of satellite and terrestrial systems in (i) downlink Ka-band and (ii) uplink Ka-band. For the two selected use cases, the performance of proposed DSS techniques has been analyzed and compared to static spectrum allocation. Notable performance gains have been obtained.


2021 ◽  
Vol 18 (12) ◽  
pp. iii-vi
Author(s):  
Yingchang Liang ◽  
Yue Gao ◽  
Liang Xiao ◽  
Yulong Zou ◽  
Guoru Ding

Sign in / Sign up

Export Citation Format

Share Document