bering land bridge
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 6)

H-INDEX

20
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Alexander T Salis ◽  
Sarah C E Bray ◽  
Michael S Y Lee ◽  
Holly Heiniger ◽  
Ross Barnett ◽  
...  

2021 ◽  
Author(s):  
Zhi-Zhong Li ◽  
Samuli Lehtonen ◽  
Andrew W. Gichira ◽  
Karina Martins ◽  
Efremov Andrey ◽  
...  

Abstract Background Hydrocharis L. and Limnobium Rich. are small aquatic genera, including three and two species, respectively. The taxonomic status, phylogenetic relationships and biogeographical history of these genera have remained unclear, owing to the lack of Central African endemic H. chevalieri from all previous studies. We sequenced and assembled plastomes of all three Hydrocharis species and Limnobium laevigatum to explore the phylogenetic and biogeographical history of these aquatic plants. Results All four newly generated plastomes were conserved in genome structure, gene content, and gene order. However, they differed in size, the number of repeat sequences, and inverted repeat borders. Our phylogenomic analyses recovered non-monophyletic Hydrocharis. African species H. chevalieri was fully supported as sister to the rest of the species, and L. laevigatum was nested in Hydrocharis as a sister to H. dubia. Hydrocharis-Limnobium initially diverged from the remaining genera at ca. 53.3 Ma, then began to diversify at ca. 30.9 Ma. The biogeographic analysis suggested that Hydrocharis probably originated in Europe and Central Africa. Conclusion Based on the phylogenetic results, morphological similarity and small size of the genera, the most reasonable taxonomic solution to the non-monophyly of Hydrocharis is to treat Limnobium as its synonym. The African endemic H. chevalieri is fully supported as a sister to the remaining species. Hydrocharis mainly diversified in the Miocene, during which rapid climate change may have contributed to the speciation and extinctions. The American species of former Limnobium probably dispersed to America through the Bering Land Bridge during the Miocene.


2021 ◽  
Author(s):  
Alisa O. Vershinina ◽  
Peter D. Heintzman ◽  
Duane G. Froese ◽  
Grant Zazula ◽  
Molly Cassatt‐Johnstone ◽  
...  

2020 ◽  
Author(s):  
Alexander T Salis ◽  
Sarah C E Bray ◽  
Michael S Y Lee ◽  
Holly Heiniger ◽  
Ross Barnett ◽  
...  

AbstractThe Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far north-east Asia) and Eastern Beringia (north-west North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation, and vegetation, impacting faunal community structure and demography. While these paleoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyze mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underscore the crucial biogeographic role of the Bering Land Bridge in the distribution, turnover, and maintenance of megafaunal populations in North America.


2019 ◽  
Vol 6 (4) ◽  
pp. 739-745 ◽  
Author(s):  
Dechun Jiang ◽  
Sebastian Klaus ◽  
Ya-Ping Zhang ◽  
David M Hillis ◽  
Jia-Tang Li

ABSTRACT The exchange of biotas between Eurasia and North America across the Bering land bridge had a major impact on ecosystems of both continents throughout the Cenozoic. This exchange has received particular attention regarding placental mammals dispersing into the Americas, including humans after the last glacial period, and also as an explanation for the disjunct distribution of related seed plants in eastern Asia and eastern North America. Here, we investigate bi-directional dispersal across the Bering land bridge from estimates of dispersal events based on time-calibrated phylogenies of a broad range of plant, fungus and animal taxa. We reveal a long-lasting phase of asymmetrical biotic interchange, with a peak of dispersal from Asia into North America during the late Oligocene warming (26–24 Ma), when dispersal in the opposite direction was greatly decreased. Influx from North America into Asia was lower than in the opposite direction throughout the Cenozoic, but with peak rates of dispersal at the end of the Eocene (40–34 Ma) and again in the early to middle Miocene (16–14 Ma). The strong association between dispersal patterns and environmental changes suggests that plants, fungi and animals have likely dispersed from stable to perturbed environments of North America and Eurasia throughout the Cenozoic.


Quaternary ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Michael O’Brien

The timing of human entrance into North America has been a topic of debate that dates back to the late 19th century. Central to the modern discussion is not whether late Pleistocene-age populations were present on the continent, but the timing of their arrival. Key to the debate is the age of tools—bone rods, large prismatic stone blades, and bifacially chipped and fluted stone weapon tips—often found associated with the remains of late Pleistocene fauna. For decades, it was assumed that this techno-complex—termed “Clovis”—was left by the first humans in North America, who, by 11,000–12,000 years ago, made their way eastward across the Bering Land Bridge, or Beringia, and then turned south through a corridor that ran between the Cordilleran and Laurentide ice sheets, which blanketed the northern half of the continent. That scenario has been challenged by more-recent archaeological and archaeogenetic data that suggest populations entered North America as much as 15,300–14,300 years ago and moved south along the Pacific Coast and/or through the ice-free corridor, which apparently was open several thousand years earlier than initially thought. Evidence indicates that Clovis might date as early as 13,400 years ago, which means that it was not the first technology in North America. Given the lack of fluted projectile points in the Old World, it appears certain that the Clovis techno-complex, or at least major components of it, emerged in the New World.


Sign in / Sign up

Export Citation Format

Share Document