uniformly smooth
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 37)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Tawfeek ◽  
Nashat Faried ◽  
H. A. El-Sharkawy

AbstractLet E be a Banach space with dual space $E^{*}$ E ∗ , and let K be a nonempty, closed, and convex subset of E. We generalize the concept of generalized projection operator “$\Pi _{K}: E \rightarrow K$ Π K : E → K ” from uniformly convex uniformly smooth Banach spaces to uniformly convex uniformly smooth countably normed spaces and study its properties. We show the relation between J-orthogonality and generalized projection operator $\Pi _{K}$ Π K and give examples to clarify this relation. We introduce a comparison between the metric projection operator $P_{K}$ P K and the generalized projection operator $\Pi _{K}$ Π K in uniformly convex uniformly smooth complete countably normed spaces, and we give an example explaining how to evaluate the metric projection $P_{K}$ P K and the generalized projection $\Pi _{K}$ Π K in some cases of countably normed spaces, and this example illustrates that the generalized projection operator $\Pi _{K}$ Π K in general is a set-valued mapping. Also we generalize the generalized projection operator “$\pi _{K}: E^{*} \rightarrow K$ π K : E ∗ → K ” from reflexive Banach spaces to uniformly convex uniformly smooth countably normed spaces and study its properties in these spaces.


2021 ◽  
Vol 5 ◽  
pp. 82-92
Author(s):  
Sergei Denisov ◽  
◽  
Vladimir Semenov ◽  

Many problems of operations research and mathematical physics can be formulated in the form of variational inequalities. The development and research of algorithms for solving variational inequalities is an actively developing area of applied nonlinear analysis. Note that often nonsmooth optimization problems can be effectively solved if they are reformulated in the form of saddle point problems and algorithms for solving variational inequalities are applied. Recently, there has been progress in the study of algorithms for problems in Banach spaces. This is due to the wide involvement of the results and constructions of the geometry of Banach spaces. A new algorithm for solving variational inequalities in a Banach space is proposed and studied. In addition, the Alber generalized projection is used instead of the metric projection onto the feasible set. An attractive feature of the algorithm is only one computation at the iterative step of the projection onto the feasible set. For variational inequalities with monotone Lipschitz operators acting in a 2-uniformly convex and uniformly smooth Banach space, a theorem on the weak convergence of the method is proved.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Linxin Li ◽  
Dingping Wu

Charles proved the convergence of Picard-type iteration for generalized Φ − accretive nonself-mappings in a real uniformly smooth Banach space. Based on the theorems of the zeros of strongly Φ − quasi-accretive mappings and fixed points of strongly Φ − hemi-contractions, we extend the results to Noor iterative process and SP iterative process for generalized Φ − hemi-contractive mappings. Finally, we analyze the rate of convergence of four iterative schemes, namely, Noor iteration, iteration of Corollary 2, SP iteration, and iteration of Corollary 4.


Author(s):  
Godwin Ugwunnadi

In this paper, we study the implicit and inertial-type viscosity approximation method for approximating a solution to the hierarchical variational inequality problem. Under some mild conditions on the parameters, we prove that the sequence generated by the proposed methods converges strongly to a solution of the above-mentioned problem in $q$-uniformly smooth Banach spaces. The results obtained in this paper generalize and improve many recent results in this direction.


Author(s):  
Paweł Wójcik

AbstractWe observe that every map between finite-dimensional normed spaces of the same dimension that respects fixed semi-inner products must be automatically a linear isometry. Moreover, we construct a uniformly smooth renorming of the Hilbert space $$\ell _2$$ ℓ 2 and a continuous injection acting thereon that respects the semi-inner products, yet it is non-linear. This demonstrates that there is no immediate extension of the former result to infinite dimensions, even under an extra assumption of uniform smoothness.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1365
Author(s):  
Yanlai Song ◽  
Mihai Postolache

In this paper, we present a new modified inertial forward–backward algorithm for finding a common solution of the quasi-variational inclusion problem and the variational inequality problem in a q-uniformly smooth Banach space. The proposed algorithm is based on descent, splitting and inertial ideas. Under suitable assumptions, we prove that the sequence generated by the iterative algorithm converges strongly to the unique solution of the abovementioned problems. Numerical examples are also given to demonstrate our results.


2021 ◽  
Vol 53 ◽  
Author(s):  
Wongvisarut Khuangsatung ◽  
Atid Kangtunyakarn

The purpose of this research is to modify Halpern iteration’s process for finding a common element of the set of solutions of a variational inequality problem and the set of fixed points of a strictly pseudo contractive mapping in q-uniformly smooth Banach space. We also introduce a new technique to prove a strong convergence theorem for a finite family of strictly pseudo contractive mappings in q-uniformly smooth Banach space. Moreover, we give a numerical result to illustrate the main theorem.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Li Wei ◽  
Wenwen Yue ◽  
Yingzi Shang ◽  
Ravi P. Agarwal

We propose and analyze a new iterative scheme with inertial items to approximate a common zero point of two countable d-accretive mappings in the framework of a real uniformly smooth and uniformly convex Banach space. We prove some strong convergence theorems by employing some new techniques compared to the previous corresponding studies. We give some numerical examples to illustrate the effectiveness of the main iterative scheme and present an example of curvature systems to emphasize the importance of the study of d-accretive mappings.


Sign in / Sign up

Export Citation Format

Share Document