jnk signaling
Recently Published Documents


TOTAL DOCUMENTS

1146
(FIVE YEARS 393)

H-INDEX

76
(FIVE YEARS 10)

2022 ◽  
Vol 5 (4) ◽  
pp. e202101315
Author(s):  
Stefanie Dichtl ◽  
David E Sanin ◽  
Carolin K Koss ◽  
Sebastian Willenborg ◽  
Andreas Petzold ◽  
...  

Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn’s Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF’s anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.


2022 ◽  
Author(s):  
Marcus Moberg ◽  
William Apró ◽  
Oscar Horwath ◽  
Gerrit van Hall ◽  
Sarah Joan Blackwood ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Tobias Heinen ◽  
Chen Xie ◽  
Maryam Keshavarz ◽  
Dominik Stappert ◽  
Sven Künzel ◽  
...  

Map2k7 (synonym Mkk7) is a conserved regulatory kinase gene and a central component of the JNK signaling cascade with key functions during cellular differentiation. It shows complex transcription patterns, and different transcript isoforms are known in the mouse (Mus musculus). We have previously identified a newly evolved testis-specific transcript for the Map2k7 gene in the subspecies M. m. domesticus. Here, we identify the new promoter that drives this transcript and find that it codes for an open reading frame (ORF) of 50 amino acids. The new promoter was gained in the stem lineage of closely related mouse species but was secondarily lost in the subspecies M. m. musculus and M. m. castaneus. A single mutation can be correlated with its transcriptional activity in M. m. domesticus, and cell culture assays demonstrate the capability of this mutation to drive expression. A mouse knockout line in which the promoter region of the new transcript is deleted reveals a functional contribution of the newly evolved promoter to sperm motility and the spermatid transcriptome. Our data show that a new functional transcript (and possibly protein) can evolve within an otherwise highly conserved gene, supporting the notion of regulatory changes contributing to the emergence of evolutionary novelties.


Aquaculture ◽  
2022 ◽  
pp. 737890
Author(s):  
Gao Gao ◽  
Guoling Liang ◽  
Hongling Wei ◽  
Xing Li ◽  
Yuhao Chen ◽  
...  

Author(s):  
Hui Yang ◽  
Zhenqian Liu ◽  
Xiaomei Liu ◽  
Xiaowei Cao ◽  
Mo Chen ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261388
Author(s):  
Bohui Peng ◽  
Chang Peng ◽  
Xiaomei Luo ◽  
Shuqi Wu ◽  
Qian Mao ◽  
...  

Cardiac hypertrophy is a complex process induced by the activation of multiple signaling pathways. We previously reported that anacardic acid (AA), a histone acetyltransferase (HAT) inhibitor, attenuates phenylephrine (PE)-induced cardiac hypertrophy by downregulating histone H3 acetylation at lysine 9 (H3K9ac). Unfortunately, the related upstream signaling events remained unknown. The mitogen-activated protein kinase (MAPK) pathway is an important regulator of cardiac hypertrophy. In this study, we explored the role of JNK/MAPK signaling pathway in cardiac hypertrophy induced by PE. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. This study showed that p-JNK directly interacts with HATs (P300 and P300/CBP-associated factor, PCAF) and alters H3K9ac. In addition, both the JNK inhibitor SP600125 and the HAT inhibitor AA attenuated p-JNK overexpression and H3K9ac hyperacetylation by inhibiting P300 and PCAF during PE-induced cardiomyocyte hypertrophy. Moreover, we demonstrated that both SP600125 and AA attenuate the overexpression of cardiac hypertrophy-related genes (MEF2A, ANP, BNP, and β-MHC), preventing cardiomyocyte hypertrophy and dysfunction. These results revealed a novel mechanism through which AA might protect mice from PE-induced cardiomyocyte hypertrophy. In particular, AA inhibits the effects of JNK signaling on HATs-mediated histone acetylation, and could therefore be used to prevent and treat pathological cardiac hypertrophy.


2021 ◽  
Author(s):  
Henriette U. Balinda ◽  
Alanna Sedgwick ◽  
Crislyn D’Souza-Schorey

AbstractInvasive melanoma is an aggressive form of skin cancer with high incidence of mortality. The process of invasion is a crucial primary step in the metastatic cascade, yet the mechanisms involved are still under investigation. Here we document a critical role for MLK3 (MAP3K11) in the regulation of melanoma cell invasion. We report that cellular loss of MLK3 in melanoma cells promotes cell invasion. Knock down of MLK3 expression results in the hyperactivation of ERK, which is linked to the formation of a BRAF/Hsp90/Cdc37 protein complex. ERK hyperactivation leads to enhanced phosphorylation and inactivation of GSK3β and the stabilization of c-Jun and JNK activity. Blocking of ERK and JNK signaling as well as Hsp90 activity downstream of MLK3-silencing significantly reduces melanoma invasion. Furthermore, our studies show that ERK activation in the aforementioned context is coupled to MT1-MMP transcription as well as the TOM1L1-dependent localization of the membrane protease to invadopodia at the invasive front. These studies provide critical insight into the mechanisms that couple MLK3 loss with BRAF hyperactivation and its consequence on melanoma invasion.


2021 ◽  
Author(s):  
Guo‐Shou Wang ◽  
Ji‐Ying Chen ◽  
Wei‐Cheng Chen ◽  
I‐Chin Wei ◽  
Szu‐Wei Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document