neuronal response
Recently Published Documents


TOTAL DOCUMENTS

578
(FIVE YEARS 121)

H-INDEX

65
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Amin Vafaei ◽  
Milad Mohammadi ◽  
Alireza Khadir ◽  
Erfan Zabeh ◽  
Faraz YazdaniBanafsheDaragh ◽  
...  

The timing of neuronal responses is considered to be important for information transferring and communication across individual neurons. However, the sources of variabilities in the timing of neuronal responses are not well understood and sometimes over-interpreted. A systematic variability in the response latencies of the primary visual cortex has been reported in presence of drifting grating stimulus. Whereas the response latencies are systematically dependent on stimulus orientation. To understand the underlying mechanism of these systematic latencies, we recorded the neuronal response of the cat visual cortex, area 17, and simulated the response latency of V1 neurons, with two geometric models. We showed that outputs of these two models significantly predict the response latencies of the electrophysiology recording during orientation tasks. The periodic patterns created in the raster plots were dependent on the relative position of the stimulus rotation center and the receptive-field sub-regions. We argue the position of stimulus is contributing to systematic response latencies, dependent on drifting orientation. Therefore, we provide a toolbox based on our geometrical model for determining the exact location of RF sub-regions. Our result indicates that a major source of neuronal variability is the lack of fine-tuning in the task parameters. Considering the simplicity of the orientation selectivity task, we argue fine-tuning of stimulus properties is crucial for deduction of neural variability in higher-order cortical areas and understanding their neural dynamics.


2021 ◽  
Vol 23 (1) ◽  
pp. 290
Author(s):  
Erin Clabough ◽  
James Ingersoll ◽  
Tyler Reekes ◽  
Alyssa Gleichsner ◽  
Amy Ryan

Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior.


2021 ◽  
Author(s):  
Piotr Wojtyniak ◽  
Boratynska-Jasinska Anna ◽  
Serwach Karolina ◽  
Gruszczynska-Biegala Joanna ◽  
Zablocka Barbara ◽  
...  

Abstract In the efforts to develop effective therapeutic strategies limiting post-ischemic injury, mitochondria emerge as key element in determining the fate of the neurons. Mitochondrial damage can be alleviated by various mechanisms including mitochondrial network remodelling, mitochondrial elimination and mitochondrial protein biogenesis. However, the mechanisms regulating the relationship between these phenomena are poorly understood. Here we hypothesize that mitofusin 2 (Mfn2), a mitochondrial GTPase, involved in mitochondrial fusion, mitochondria trafficking and mitochondria and endoplasmic reticulum (ER) tethering, may act as a linking and regulatory factor in neurons following ischemic insult. To verify this assumption, we performed a temporal oxygen and glucose deprivation (OGD) on rat cortical primary culture to determine whether Mfn2 protein reduction may affect the onset of mitophagy, subsequent mitochondrial biogenesis and thus neuronal survival. In our study we found that Mfn2 knock-down increased the susceptibility of the neurons to the OGD. Mfn2 protein reduction prevented mitochondrial network remodelling and resulted in the prolonged mitophagosomes formation in response to the insult. Further on, Mfn2 protein reduction was accompanied by a reduced level of Parkin protein and an increased Parkin accumulation with mitochondria. As for Mfn2-expressing neurons, the OGD insult was followed by an elevated mtDNA content and an increase in the respiratory chain proteins. Neither of this phenomena were observed for Mfn2-reduced neurons. Collectively, our findings show that Mfn2 in neurons is involved in their response to mild and transient OGD stress, balancing the extent of elimination of defective mitochondria and positively influencing mitochondrial respiratory proteins levels. Our study confirms that Mfn2 is an essential element of the neuronal response to ischemic insult, necessary for the neuronal survival.


2021 ◽  
Author(s):  
Kang-Lin Hsieh ◽  
German Plascencia-Villa ◽  
Ko-Hong Lin ◽  
George Perry ◽  
Xiaoqian Jiang ◽  
...  

ABSTRACTDeveloping drugs for treating Alzheimer’s disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies. To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates. We developed and computationally validated a heterogeneous graph representation model with transfer learning from universal biomedical databases and with joint optimization with AD risk genes. Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase II/III clinical trials. We experimentally validated the top-ranked candidates in neuronal cells, identifying drug combinations with efficacy in reducing oxidative stress and safety in maintaining neuronal viability and morphology. Our neuronal response experiments confirmed several biologically efficacious drug combinations (e.g., Galantamine + Mifepristone). This pipeline showed that harmonizing heterogeneous and complementary data/knowledge, including human interactome, transcriptome patterns, experimental efficacy, and real-world patient data shed light on the drug development of complex diseases.


2021 ◽  
Author(s):  
Zhenzhen Xu ◽  
Wanli Xie ◽  
Yiqi Feng ◽  
Yanting Wang ◽  
Yuyao He ◽  
...  

Abstract Background: The pathogenesis of neuropathic pain and the reasons for the prolonged unhealing are still unknown. Increasing evidence suggests that estrogen sex differences play a role in pain sensitivity, but few studies focused on the role of estrogen receptor which maybe an important molecular component contributing to peripheral pain transduction. We aimed to investigate the impact of oestrogen receptors in nociceptive neuronal response in the dorsal root ganglion (DRG) and spinal dorsal horn using a spared nerve injury (SNI) rat model of chronic pain. Methods: We used a class of estrogen receptors antagonists and agonists intrathecal (i.t.) administrated to male rats with SNI or normal rats to identify the main receptor. Moreover, we applied genes identified through genomic metabolic analysis to determine the key metabolism point and elucidate potential mechanisms mediating continuous neuronal sensitisation and neuroinflammation responses in neuropathic pain. The excitability of DRG neurons was detected using the patch clamp technique. Immunohistochemistry, Western blotting, qPCR and behavioral testing were used to assess the expressions, cellular distributions, and actions of main receptor and its related signaling molecules.Results: Increasing the expression and function of G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), in the DRG, but not the dorsal spinal cord, contributed to SNI-induced neuronal sensitisation. Inhibiting GPER expression in the DRG alleviated SNI-induced pain behaviours and neuroinflammation by downregulating IL-1β and IL-6 expression as well as restoring GABAα2 expression simultaneously. Additionally, the positive interaction between GPER and β-alanine, β-alanine accumulation enhances pain sensation and promotes chronic pain development. Conclusion: GPER activation in the DRG causes a positive interaction of β-alanine with IL-1β and IL-6 expression and represses GABAα2 involved in post-SNI neuropathic pain development. Blocking GPER and eliminating β-alanine in the DRG may prevent neuropathic pain development.


2021 ◽  
Vol 22 (23) ◽  
pp. 12936
Author(s):  
Francisco Llavero Bernal ◽  
Miriam Luque Montoro ◽  
Alazne Arrazola Sastre ◽  
Hadriano M. Lacerda ◽  
José Luis Zugaza

ATP, one of the signaling molecules most commonly secreted in the nervous system and capable of stimulating multiple pathways, binds to the ionotropic purinergic receptors, in particular, the P2X7 receptor (P2X7R) and stimulates neuronal cell death. Given this effect of purinergic receptors on the viability of dopaminergic neurons model cells and that Ras GTPases control Erk1/2-regulated mitogen-activated cell proliferation and survival, we have investigated the role of the small GTPases of the Ras superfamily, together with their regulatory and effector molecules as the potential molecular intermediates in the P2X7R-regulated cell death of SN4741 dopaminergic neurons model cells. Here, we demonstrate that the neuronal response to purinergic stimulation involves the Calmodulin/RasGRF1 activation of the small GTPase Ras and Erk1/2. We also demonstrate that tyrosine phosphatase PTPRβ and other tyrosine phosphatases regulate the small GTPase activation pathway and neuronal viability. Our work expands the knowledge on the intracellular responses of dopaminergic cells by identifying new participating molecules and signaling pathways. In this sense, the study of the molecular circuitry of these neurons is key to understanding the functional effects of ATP, as well as considering the importance of these cells in Parkinson’s Disease.


2021 ◽  
Author(s):  
Merve Kiniklioglu ◽  
Huseyin Boyaci

Here we investigate how the extent of spatial attention affects center-surround interaction in visual motion processing. To do so, we measured motion direction discrimination thresholds in humans using drifting gratings and two attention conditions. Under the narrow attention condition, attention was limited to the central part of the visual stimulus, whereas under the wide attention condition, it was directed to both the center and surround of the stimulus. We found stronger surround suppression under the wide attention condition. The magnitude of the attention effect increased with the size of the surround when the stimulus had low contrast, but did not change when it had high contrast. Results also showed that attention had a weaker effect when the center and surround gratings drifted in opposite directions. Next, to establish a link between the behavioral results and the neuronal response characteristics, we performed computer simulations using the divisive normalization model. Our simulations showed that the model can successfully predict the observed behavioral results using parameters derived from the medial temporal (MT) area of the cortex. These findings reveal the critical role of spatial attention on surround suppression and establish a link between neuronal activity and behavior. Further, these results also suggest that the reduced surround suppression found in certain clinical disorders (e.g., schizophrenia and autism spectrum disorder) may be caused by abnormal attention mechanisms.


2021 ◽  
Vol 22 (22) ◽  
pp. 12365
Author(s):  
Sumika Toyama ◽  
Mitsutoshi Tominaga ◽  
Kenji Takamori

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.


2021 ◽  
Author(s):  
Florian MISSEY ◽  
Mary Jocelyn DONAHUE ◽  
Pascal WEBER ◽  
Ibrahima NGOM ◽  
Emma ACERBO ◽  
...  

Deep brain stimulation (DBS) is a technique commonly used both in clinical and fundamental neurosciences. Classically, brain stimulation requires an implanted and wired electrode system to deliver stimulation directly to the target area. Although techniques such as temporal interference (TI) can provide stimulation at depth without involving any implanted electrodes, these methods still rely on a wired apparatus which limits free movement. Herein we report organic photocapacitors as untethered light-driven electrodes which convert deep-red light into electric current. Pairs of these ultrathin devices can be driven using lasers at two different frequencies to deliver stimulation at depth via temporally interfering fields. We validate this concept of laser TI stimulation using numerical modeling, ex vivo tests with phantom samples, and finally in vivo tests. Wireless organic photocapacitors are placed on the cortex and elicit stimulation in the hippocampus, while not delivering off-target stimulation in the cortex. This laser-driven wireless TI evoked a neuronal response at depth that is comparable to control experiments induced with deep brain stimulation protocols using implanted electrodes. Our work shows that a combination of these two techniques, temporal interference and organic electrolytic photocapacitors, provides a reliable way to target brain structures requiring neither deeply implanted electrodes nor tethered stimulator devices. The laser TI protocol demonstrated here address two of the most important drawbacks in the field of deep brain stimulation and thus holds potential to solve many issues in freely-moving animal experiments or for clinical chronic therapy application.


Sign in / Sign up

Export Citation Format

Share Document