grass sickness
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 11)

H-INDEX

25
(FIVE YEARS 0)

2021 ◽  
Vol 49 (06) ◽  
pp. 437-437
Keyword(s):  

Die Equine Grass Sickness (EGS) betrifft fast ausschließlich Pferde aus Weidehaltung. Als Ursache wird die Aufnahme eines Erregers aus dem Boden vermutet, der in der Lage ist, Neurotoxine zu produzieren. Die klinischen Symptome lassen sich auf Läsionen im autonomen und enterischen Nervensystem (ANS und ENS) zurückführen. Typische Symptome sind u. a. Anorexie, Dysphagie, vermehrtes Speicheln, Tachykardie, Ptosis, lokales Schwitzen, Muskelfaszikulationen und Reflux. Bisher wurde kein wissenschaftlicher Nachweis von Fällen der EGS in Italien veröffentlicht, obwohl die Krankheit dort seit 1970 sporadisch diagnostiziert wurde.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bruce C. McGorum ◽  
Zihao Chen ◽  
Laura Glendinning ◽  
Hyun S. Gweon ◽  
Luanne Hunt ◽  
...  

Abstract Background Equine grass sickness (EGS) is a multiple systems neuropathy of grazing horses of unknown aetiology. An apparently identical disease occurs in cats, dogs, rabbits, hares, sheep, alpacas and llamas. Many of the risk factors for EGS are consistent with it being a pasture mycotoxicosis. To identify potential causal fungi, the gastrointestinal mycobiota of EGS horses were evaluated using targeted amplicon sequencing, and compared with those of two control groups. Samples were collected post mortem from up to 5 sites in the gastrointestinal tracts of EGS horses (EGS group; 150 samples from 54 horses) and from control horses that were not grazing EGS pastures and that had been euthanased for reasons other than neurologic and gastrointestinal diseases (CTRL group; 67 samples from 31 horses). Faecal samples were also collected from healthy control horses that were co-grazing pastures with EGS horses at disease onset (CoG group; 48 samples from 48 horses). Results Mycobiota at all 5 gastrointestinal sites comprised large numbers of fungi exhibiting diverse taxonomy, growth morphology, trophic mode and ecological guild. FUNGuild analysis parsed most phylotypes as ingested environmental microfungi, agaricoids and yeasts, with only 1% as gastrointestinal adapted animal endosymbionts. Mycobiota richness varied throughout the gastrointestinal tract and was greater in EGS horses. There were significant inter-group and inter-site differences in mycobiota structure. A large number of phylotypes were differentially abundant among groups. Key phylotypes (n = 56) associated with EGS were identified that had high abundance and high prevalence in EGS samples, significantly increased abundance in EGS samples, and were important determinants of the inter-group differences in mycobiota structure. Many key phylotypes were extremophiles and/or were predicted to produce cytotoxic and/or neurotoxic extrolites. Conclusions This is the first reported molecular characterisation of the gastrointestinal mycobiota of grazing horses. Key phylotypes associated with EGS were identified. Further work is required to determine whether neurotoxic extrolites from key phylotypes contribute to EGS aetiology or whether the association of key phylotypes and EGS is a consequence of disease or is non-causal.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Laus Fulvio ◽  
Corsalini Jacopo ◽  
Mandara Maria Teresa ◽  
Bazzano Marilena ◽  
Bertoletti Alice ◽  
...  

Abstract Background Equine grass sickness (EGS) has been reported in several European and extra-European countries. Despite this, no scientific paper about clinical cases of EGS in Italy has been published. EGS is a disease affecting almost exclusively horses kept on pasture, characterized by clinical signs related to lesions in autonomic nervous system (ANS), particularly in the enteric nervous system (ENS). According to clinical presentation, acute, subacute and chornic syndromes can be observed, with various sympthoms including dullness, anorexia, dysphagia, drooling of saliva, tachycardia, ptosis, patchy sweating and muscle fasciculations. In horses affected by acute forms, mild to moderate abdominal pain and large volumes of nasogastric reflux can be observed. The etiology is still speculative and many hypothesis have been proposed to explain the pathogenesis. Case presentation The present study describes four cases of EGS (one subacute and three chronic forms) occurred in Central Italy during early spring. In all the cases included in the study, the prognosis was poor and the horses were euthanized. The diagnosis was confirmed by histological examination of ANS or ENS. In two cases, in vivo diagnosis was obtained by histological examination of enteric bioptic samples collected during laparoscopy. Conclusions EGS in Italy could be underdiagnosed and incidence understimated. Greater awareness should be applied in Italy for the inclusion of EGS in differential diagnosis for horses presenting clinical signs of abdominal pain associated or not with gastric reflux and muscular fasciculation. All the cases in this study concerned horses kept in the same pasture, confirming a possible premise-linked and management-linked factors on the ethiopathogenesis of EGS. The age of horses ranged from 2 to 6 years, that is consistent with the risk factor age for EGS (from 2 to 7 years of age). Previous suspected EGS diagnosis in the same livestock and recent cool dry weather were considered additional potential risk factors.


2021 ◽  
Author(s):  
Bruce McGorum ◽  
Zihao Chen ◽  
Laura Glendinning ◽  
Hyus Gweon ◽  
Luanne Hunt ◽  
...  

Abstract Background: Equine grass sickness (EGS) is a multiple systems neuropathy of grazing horses of unknown aetiology. An apparently identical disease occurs in cats, dogs, rabbits, hares, sheep, alpacas and llamas. Many of the risk factors for EGS are consistent with it being a pasture mycotoxicosis. To identify potential causal fungi, the gastrointestinal mycobiota of EGS horses were evaluated using targeted amplicon sequencing, and compared with those of two control groups. Samples were collected post mortem from up to 5 sites in the gastrointestinal tracts of EGS horses (EGS group; 150 samples from 54 horses) and from control horses that were not grazing EGS pastures and that had been euthanased for reasons other than neurologic and gastrointestinal diseases (CTRL group; 67 samples from 31 horses). Faecal samples were also collected from healthy control horses that were co-grazing pastures with EGS horses at disease onset (CoG group; 48 samples from 48 horses). Results: Mycobiota at all 5 gastrointestinal sites comprised large numbers of fungi exhibiting diverse taxonomy, growth morphology, trophic mode and ecological guild. FUNGuild analysis parsed most phylotypes as ingested environmental microfungi, agaricoids and yeasts, with only 1% as gastrointestinal adapted animal endosymbionts. Indices of alpha-diversity indicated that mycobiota richness and diversity varied throughout the gastrointestinal tract and were greater in EGS horses. There were significant inter-group and inter-site differences in mycobiota structure. A large number of phylotypes were differentially abundant among groups. Key phylotypes (n=56) associated with EGS were identified that had high abundance and high prevalence in EGS samples, significantly increased abundance in EGS samples, and were important determinants of the inter-group differences in mycobiota structure. Many key phylotypes were extremophiles and/or were predicted to produce cytotoxic and/or neurotoxic extrolites. Conclusions: This is the first reported molecular characterisation of the gastrointestinal mycobiota of grazing horses. Key phylotypes associated with EGS were identified. Further work is required to determine whether neurotoxic extrolites from key phylotypes contribute to EGS aetiology or whether the association of key phylotypes and EGS is a consequence of disease or is non-causal.


2021 ◽  
Vol 37 (6) ◽  
pp. 569–576-569–576
Author(s):  
N Resetic ◽  
A Richter Jorgensen ◽  
L Husted
Keyword(s):  

Author(s):  
Boglárka Vincze ◽  
Márta Varga ◽  
Orsolya Kutasi ◽  
Petra Zenke ◽  
Ottó Szenci ◽  
...  

AbstractEquine grass sickness (also known as dysautonomia) is a life-threatening polyneuropathic disease affecting horses with approx. 80% mortality. Since its first description over a century ago, several factors, such as the phenotype, intestinal microbiome, environment, management and climate, have been supposed to be associated with the increased risk of dysautonomia. In this retrospective study, we examined the possible involvement of genetic factors. Medical and pedigree datasets regarding 1,233 horses with 49 affected animals born during a 23-year period were used in the analysis. Among the descendants of some stallions, the proportion of animals diagnosed with dysautonomia was unexpectedly high. Among males, the odds of dysautonomia were found to be higher, albeit not significantly, than among females. Significant familial clustering (genealogical index of familiality, P = 0.001) was observed among the affected animals. Further subgroups were identified with significant (P < 0.001) aggregation among close relatives using kinship-based methods. Our analysis, along with the slightly higher disease frequency in males, suggests that dysautonomia may have a genetic causal factor with an X-linked recessive inheritance pattern. This is the first study providing ancestry data and suggesting a heritable component in the likely multifactorial aetiology of the disease.


Sign in / Sign up

Export Citation Format

Share Document