metallic copper
Recently Published Documents


TOTAL DOCUMENTS

593
(FIVE YEARS 114)

H-INDEX

50
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 564
Author(s):  
Jawad Yousaf ◽  
Eqab Almajali ◽  
Mahmoud El Najjar ◽  
Ahmed Amir ◽  
Amir Altaf ◽  
...  

This work presents the design and analysis of newly developed reconfigurable, flexible, inexpensive, optically-controlled, and fully printable chipless Arabic alphabet-based radio frequency identification (RFID) tags. The etching of the metallic copper tag strip is performed on a flexible simple thin paper substrate (ϵr = 2.31) backed by a metallic ground plane. The analysis of investigated tags is performed in CST MWS in the frequency range of 1–12 GHz for the determination of the unique signature resonance characteristics of each tag in terms of its back-scattered horizontal and vertical mono-static radar cross section (RCS). The analysis reflects that each tag has its own unique electromagnetic signature (EMS) due to the changing current distribution of metallic resonator. This EMS of each tag could be used for the robust detection and recognition of all realized 28 Arabic alphabet tags. The study also discusses, for the first time, the effect of the change in font type and size of realized tags on their EMS. The robustness and reliability of the obtained EMS of letter tags is confirmed by comparing the RCS results for selective letter tags using FDTD and MoM numerical methods, which shows very good agreement. The proposed tags could be used for smart internet of things (IoT) and product marketing applications.


2021 ◽  
Vol 104 (4) ◽  
pp. 128-137
Author(s):  
Ye.S. Mustafin ◽  
◽  
Kh.B. Omarov ◽  
A.S. Borsynbaev ◽  
D. Havlichek ◽  
...  

In this work, for the first time, studies of the mineralogical composition and chemical semi-quantitative spectral analysis (SQSA) of the Zhezkazgan processing plant tailings before and after leaching were carried out. It was found that copper is present in the tailings in the form of the chalcosine and bornite minerals. After leaching with the use of ammonium bifluoride and a hydro-pulse discharge, chalcosine and boronite are destroyed, and copper passes into a solution containing phosphoric acid. As a result of multiple placing of tailings into the solution, the copper content in it is brought to a concentration at which copper deposition on a stainless steel plate is possible. The identification of copper was implemented on a LAES-Matrix grain spectrometer. A visual comparative analysis of the changes in the structure of the treated ore waste was carried out using a TESCAN MIRA scanning electron microscope. Metallic copper was obtained from solution by electrochemical reactions in an experimental laboratory setup as a result. The technology was developed on an experimental laboratory setup for the extraction of metallic copper and brought the choice of the solution medium and electrochemical processes to the stage of obtaining the target metal with a purity of 99.99 %


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7906
Author(s):  
Walid Mohamed Daoush ◽  
Turki Saad Alkhuraiji ◽  
Abdulrahman Dohymish Alshammri

Polycrystalline cBN/copper composite abrasive particles were prepared by an electroless powder coating process. Ti metallization and tin/silver metallization techniques were used to improve the coating process by depositing an autocatalytic metallic layer on the surface of the cBN particles. Metallized, as well as un-metallized, cBN particles were further coated by copper using electroless deposition. Electroless copper coating of un-metallized and metallized cBN particles by 90 wt.% of copper were achieved. The surface morphology, the composition and the crystalline phase identifications of the metallized cBN particles, as well as the 10 wt.% cBN /copper composite powders, were investigated by field emission scanning electron microscopy, an energy-dispersive spectrometer and an X-ray diffractometer. The results show that the surface of the Ti metalized and tin/Ag-metallized cBN particles were covered by the nanosized Ti or Ag layer, respectively, which enhanced the deposition of the copper during the electroless deposition bath. The results also showed that the deposited layer on the metallized cBN particles was composed mainly of metallic copper. The produced 10 wt.% cBN/copper composite particles also underwent thermo-gravimetric analysis to investigate its stability at high temperature. It was revealed that the Ti-metallized cBN/copper composite powder has higher stability at 800 °C under the environmental conditions than the tin/silver-metallized and the un-metallized cBN/copper composite particles, respectively.


Small Methods ◽  
2021 ◽  
pp. 2101001
Author(s):  
Xueteng Zhu ◽  
Jinyan Xiong ◽  
Zhiyuan Wang ◽  
Rong Chen ◽  
Gang Cheng ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7472
Author(s):  
Aleksei Kritskii ◽  
Stanislav Naboichenko

The nature of the hydrothermal reaction between arsenopyrite particles (FeAsS) and copper sulfate solution (CuSO4) was investigated in this study. The effects of temperature (443–523 K), CuSO4 (0.08–0.96 mol/L) and H2SO4 (0.05–0.6 mol/L) concentrations, reaction time (1–120 min), stirring speed (40–100 rpm) and particle size (10–100 μm) on the FeAsS conversion were studied. The FeAsS conversion was significant at >503 K, and it is suggested that the reaction is characterized by the formation of a thin layer of metallic copper (Cu0) and elemental sulfur (S0) around the unreacted FeAsS core. The shrinking core model (SCM) was applied for describing the process kinetics, and the rate of the overall reaction was found to be controlled by product layer diffusion, while the overall process was divided into two stages: (Stage 1: mixed chemical reaction/product layer diffusion-controlled) interaction of FeAsS with CuSO4 on the mineral’s surface with the formation of Cu1+ and Fe2+ sulfates, arsenous acid, S0, and subsequent diffusion of the reagent (Cu2+) and products (As3+ and Fe2+) through the gradually forming layer of Cu0 and molten S0; (Stage 2: product layer diffusion-controlled) the subsequent interaction of CuSO4 with FeAsS resulted in the formation of a denser and less porous Cu0 and S0 layer, which complicates the countercurrent diffusion of Cu2+, Cu1+, and Fe2+ across the layer to the unreacted FeAsS core. The reaction orders with respect to CuSO4 and H2SO4 were calculated as 0.41 and −0.45 for Stage 1 and 0.35 and −0.5 for Stage 2. The apparent activation energies of 91.67 and 56.69 kJ/mol were obtained for Stages 1 and 2, respectively.


Author(s):  
Olena Zoria ◽  
Oleksiy Ternovtsev ◽  
Dmytro Zoria

The article is devoted to solving an urgent problem - the development of effective methods of water purification from heavy metal ions from industrial wastewater. Today more emphasis on technologies that allow recycling of precious metals, the organization of return water supply and receipt safe disposal of sludge. Experimental studies of copper ions extraction from industrial wastewater of galvanic production by ferritization method have been carried out. The process of formation of ferromagnetic compounds of copper and iron has been studied. The results of X-ray diffraction analysis of the mineralogical composition of the samples and phase transformations that occur during aging and during the experiment are presented. The lattice constant of the α-ferite phase is calculated. X-ray diffraction analysis confirmed the presence of ferite compounds and metallic copper. In this case, in the process of "aging" of the samples, the amount of the ferrite phase and metallic copper increases. Electron microscopic analysis confirmed that in the surface layer changed due to the formation of new phases, copper-containing iron oxides, the formation of cement copper and cuprospinel simultaneously exist. The influence on the course of the ferritization process of its conditions - the concentration and ratio of copper and iron ions, temperature, pH of the medium, the consumption of oxidant - oxygen is studied. The optimal parameters of the ferritization process for wastewater treatment from copper with an initial concentration of up to 10 g / l are determined. The possibility of formation of copper ferrite without aeration at a temperature of 200 C is shown. The study of physicochemical properties of sediments formed during ferritization is performed. Studies have shown that the residual concentration of copper in the solution after the application of the proposed technology is in the range from 0.14 to 0.6 mg / l. The efficiency of copper removal is 99.98%. It is established that at the process temperature within 50… 700 C, the ratio Cu: Fe = 1: 2.7, pH = 8.8… 10.5 and aeration intensity 4… 8 l / min precipitates are formed, which consist in the vast majority of ferrites and metallic copper.  


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3236
Author(s):  
Deliang Yang ◽  
Runping Ye ◽  
Ling Lin ◽  
Rong Guo ◽  
Peiyu Zhao ◽  
...  

Boron (B) promoter modified Cu/SiO2 bifunctional catalysts were synthesized by sol-gel method and used to produce ethylene glycol (EG) and ethanol (EtOH) through efficient hydrogenation of dimethyl oxalate (DMO). Experimental results showed that boron promoter could significantly improve the catalytic performance by improving the structural characteristics of the Cu/SiO2 catalysts. The optimized 2B-Cu/SiO2 catalyst exhibited excellent low temperature catalytic activity and long-term stability, maintaining the average EG selectivity (Sel.EG) of 95% at 190 °C, and maintaining the average EtOH selectivity (Sel.EtOH) of 88% at 260 °C, with no decrease even after reaction of 150 h, respectively. Characterization results revealed that doping with boron promoter could significantly increase the copper dispersion, enhance the metal-support interaction, maintain suitable Cu+/(Cu+ + Cu0) ratio, and diminish metallic copper particles during the hydrogenation of DMO. Thus, this work introduced a bifunctional boron promoter, which could not only improve the copper dispersion, reduce the formation of bulk copper oxide, but also properly enhance the acidity of the sample surface, so that the Cu/SiO2 sample could exhibit superior EG selectivity at low temperature, as well as improving the EtOH selectivity at high temperature.


Sign in / Sign up

Export Citation Format

Share Document