aliphatic glucosinolates
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 14)

H-INDEX

26
(FIVE YEARS 2)

Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 398
Author(s):  
Lu Tong ◽  
Shanhan Cheng ◽  
Honghao Lv ◽  
Chengzhi Zhao ◽  
Jie Zhu ◽  
...  

The content and component of glucosinolates in edible stems and leaves of eight Chinese kale varieties from Japan and eight varieties from China were determined by HPLC-MS. Simultaneously, the expression levels of glucosinolate biosynthesis pathway genes from four varieties with high and low total glucosinolate contents were analyzed by the qRT-PCR method. Four types of aliphatic glucosinolates (A-GLSs: GRA, SIN, GNA and GER) and indole glucosinolates (I-GLSs: 4-HGBS, GBS, 4-MGBS and NGBS) were detected in the stems and leaves of 16 varieties, and no aromatic glucosinolates (R-GLSs) were detected. A-GLSs account for more than 80.69% of the total content of total glucosinolates (T-GLSs), in which GNA and GRA are the main components of stems and leaves. Among Japanese varieties, QB1 has higher content of A- and T-GLSs, while that of XLB was lower; however, the corresponding varieties were ZH and DSHH in Chinese varieties. Among the above four varieties, the expression levels of SOT16, CYP83B1, SOT17, CYP83A1 and MAM1 genes were significantly higher in the varieties with higher GLSs; the expression levels of SOT16 and CYP83B1 were consistent with the content of I-GLSs; and SOT17, CYP83A1 and MAM1 expression levels were consistent with A-GLSs content. At the same time, the expression levels of SOT16 and CYP83B1 in the leaves were higher than those in the stems. CYP83A1 and MAM1 genes were less expressed in the leaves than in the stems of lower content varieties. It is speculated that these genes may be the key genes regulating GLS biosynthesis in Chinese kale.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5171
Author(s):  
Weicheng Wu ◽  
Jingqiu Chen ◽  
Dandan Yu ◽  
Shiguo Chen ◽  
Xingqian Ye ◽  
...  

Red cabbage (Brassica oleracea L. var. capitata) continues to receive increasing attention on its health-promoting properties because of its high glucosinolate content. Glucosinolates are an unstable active substance; however, there are few studies on their changes in different cooking processes. In this study, we investigated the effects of processing methods (boiling, steaming, microwave heating, frying, stir-frying) and boiling time on glucosinolates in red cabbage. Ten glucosinolates, including 4-methoxyglucobrassicin, neoglucobrassicin, glucoalyssin, glucobrassicin, glucoraphanin, glucoiberin, progoitrin, gluconapin and sinigrin, in red cabbage were detected. Decreases of 32.36%, 24.83%, 25.27%, 81.11% and 84.29% for total glucosinolates were observed after boiling, microwaving, steaming, frying and stir-frying. Indole glucosinolates were more efficiently lost compared to aliphatic glucosinolates after boiling, while microwaving, steaming, frying and stir-frying also resulted in a greater reduction in indole glucosinolates than aliphatic glucosinolates. Glucoalyssin, glucoerucin and sinigrin were more thermal sensitive than other glucosinolates. It was confirmed that microwaving and steaming retained higher levels of glucosinolates than other methods and may be better for cooking red cabbage.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1304
Author(s):  
Nina Kacjan Maršić ◽  
Ksenija Sinkovič Može ◽  
Rok Mihelič ◽  
Marijan Nečemer ◽  
Metka Hudina ◽  
...  

A field trial of white cabbage (Brassica oleracea var. Capitata L.) was carried out under the humid temperate climate conditions in Central Slovenia to investigate the effects of calcium ammonium nitrate (0, 180 and 240 kg N ha−1) and gypsum (0 and 40 kg S ha−1) fertilisation on yield, yield quality (nitrate, glucosinolate levels and glucosinolate profile) and nitrogen use efficiency. The highest marketable yield, dry matter yield and nitrogen uptake were obtained at the highest nitrogen fertilisation rate when in combination with sulphur. For this treatment, the nitrogen surplus in the soil after harvesting was lower than for the same nitrogen fertilisation without sulphur application. For the combination N240S40, the sulphur addition significantly increased nitrogen use efficiency, which resulted in reduced nitrate content in the cabbage heads. The chemical forms of glucosinolates showed that 80–85% were aliphatic glucosinolates with the remainder as the indole group. For the aliphatic glucosinolates, significant interactions between nitrogen and sulphur fertilisations were reflected in increased levels of progoitrin and glucoiberin when sulphur was applied at the lower nitrogen fertilisation rates. For the indole group, the levels of glucobrassicin and the indole group itself decreased at higher nitrogen fertilisation rates, independent of sulphur fertilisation.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1305
Author(s):  
Valentina Ljubej ◽  
Ivana Radojčić Redovniković ◽  
Branka Salopek-Sondi ◽  
Ana Smolko ◽  
Sanja Roje ◽  
...  

Brassica oleracea var. acephala is known to have a strong tolerance to low temperatures, but the protective mechanisms enabling this tolerance are unknown. Simultaneously, this species is rich in health-promoting compounds such as polyphenols, carotenoids, and glucosinolates. We hypothesize that these metabolites play an important role in the ability to adapt to low temperature stress. To test this hypothesis, we exposed plants to chilling (8 °C) and additional freezing (−8 °C) temperatures under controlled laboratory conditions and determined the levels of proline, chlorophylls, carotenoids, polyphenols, and glucosinolates. Compared with that of the control (21 °C), the chilling and freezing temperatures increased the contents of proline, phenolic acids, and flavonoids. Detailed analysis of individual glucosinolates showed that chilling increased the total amount of aliphatic glucosinolates, while freezing increased the total amount of indolic glucosinolates, including the most abundant indolic glucosinolate glucobrassicin. Our data suggest that glucosinolates are involved in protection against low temperature stress. Individual glucosinolate species are likely to be involved in different protective mechanisms because they show different accumulation trends at chilling and freezing temperatures.


2021 ◽  
Vol 97 ◽  
pp. 103777
Author(s):  
Ahui Xue ◽  
Wenjing Liang ◽  
Shide Wen ◽  
Yuanyuan Gao ◽  
Xueyong Huang ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 326
Author(s):  
Angela Valentina Ceccarelli ◽  
Begoña Miras-Moreno ◽  
Valentina Buffagni ◽  
Biancamaria Senizza ◽  
Youry Pii ◽  
...  

Despite the scientific evidence supporting their biostimulant activity, the molecular mechanism(s) underlying the activity of protein hydrolysates (PHs) and the specificity among different products are still poorly explored. This work tested five different protein hydrolysates, produced from different plant sources using the same enzymatic approach, for their ability to promote rooting in tomato cuttings following quick dipping. Provided that all the different PHs increased root length (45–93%) and some of them increased root number (37–56%), untargeted metabolomics followed by multivariate statistics and pathway analysis were used to unravel the molecular processes at the basis of the biostimulant activity. Distinct metabolomic signatures could be found in roots following the PHs treatments. In general, PHs shaped the phytohormone profile, modulating the complex interaction between cytokinins and auxins, an interplay playing a pivotal role in root development, and triggered a down accumulation of brassinosteroids. Concerning secondary metabolism, PHs induced the accumulation of aliphatic glucosinolates, alkaloids, and phenylpropanoids, potentially eliciting crop resilience to stress conditions. Here, we confirm that PHs may have a hormone-like activity, and that their application can modulate plant growth, likely interfering with signaling processes. Noteworthy, the heterogenicity of the botanical origin supported the distinctive and peculiar metabolomic responses we observed across the products tested. While supporting their biostimulant activity, these findings suggest that a generalized crop response to PHs cannot be defined and that specific effects are rather to be investigated.


Author(s):  
Ruo Sun ◽  
Xingcong Jiang ◽  
Michael Reichelt ◽  
Jonathan Gershenzon ◽  
Daniel Giddings Vassão

AbstractThe cabbage aphid Brevicoryne brassicae is a notorious agricultural pest that specializes on plants of the Brassicaceae family, which are chemically defended by glucosinolates. By sequestering glucosinolates from its host plants and producing its own activating enzyme (myrosinase), this aphid employs a self-defense system against enemies paralleling that in plants. However, we know little about the metabolic fate of individual glucosinolates during aphid sequestration and activation and about the biochemical effects of this defense on aphid enemies. Here, we probed these questions focusing on B. brassicae and a predatory lacewing, Chrysoperla carnea. We found that distinct glucosinolates were accumulated by B. brassicae at different rates, with aliphatic glucosinolates being taken up more quickly than indolic ones. B. brassicae myrosinase enzymatic activities toward different glucosinolates were strongly correlated to their rates of accumulation in vivo. Surprisingly, after simulated predation, the production of toxic isothiocyanate products (ITCs) was quantitatively outweighed by less toxic products such as nitriles and ITC-conjugates. Nevertheless, the defensive cocktails significantly impaired C. carnea development. Tissue-specific quantification of glucosinolate metabolites revealed that the lacewings employ both conjugation and mobilization to reduce the toxicity of aliphatic ITCs, but these strategies were only partially effective. These results clarify the metabolic fates of glucosinolates after sequestration by an aphid herbivore and further in a higher trophic level, as well as the consequences for predator survival and development, and might be instructive for integrative pest management approaches targeting the cabbage aphid.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2337
Author(s):  
Jung Wook Lee ◽  
In Ho Kim ◽  
Tofuko Awori Woyengo

Canola co-products are widely included in swine diets as sources of proteins. However, inclusion of canola co-products in diets for pigs is limited by toxicity of glucosinolate degradation products. Aliphatic and aromatic glucosinolates are two major classes of glucosinolates. Glucosinolate degradation products derived from aliphatic glucosinolates (progoitrin) include crambene, epithionitriles, and goitrin, whereas indole-3-acetonitrile, thiocyanate, and indole-3-carbinol are the major aromatic glucosinolates (glucobrassicin)-derived degradation products. At acidic pH (<5.7), progoitrin is degraded by myrosinases to crambene and epithionitriles in the presence of iron, regardless of the presence of epithiospecifier protein (ESP), whereas progoitrin is degraded by myrosinases to goitrin in the absence of ESP, regardless of the presence of iron at neutral pH (6.5). Indole-3-acetonitrile is the major degradation product derived from glucobrassicin in the absence of ESP, regardless of the presence of iron at acidic pH (<4.0), whereas thiocyanate and indole-3-carbinol are the major glucobrassicin-derived degradation products in the absence of ESP, regardless of the presence of iron at neutral pH (7.0). In conclusion, the composition of glucosinolate degradation products is affected by parent glucosinolate composition and hindgut pH. Thus, toxicity of canola co-product-derived glucosinolates can be potentially alleviated by modifying the hindgut pH of pigs.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1006
Author(s):  
Mengyao Li ◽  
Fangjie Xie ◽  
Jie Li ◽  
Bo Sun ◽  
Ya Luo ◽  
...  

Stem mustard is a stem variety of mustard, an important Brassica vegetable. The formation and development of the tumorous stem, which is the key organ for the direct yield and quality, is a complex biological process involving morphogenesis, material accumulation and gene regulation. In this study, we demonstrated through anatomical studies that stem swelling is mainly dependent on the increase in the number of cells and the volume of parenchyma cells in the cortex and pith. To further understand transcript and metabolic changes during stem swelling, we obtained 27,901 differentially expressed genes, of which 671 were specifically detected using transcriptome sequencing technology in all four stages of stem swelling. Functional annotation identified enrichment for genes involved in photosynthesis, energy metabolism, cell growth, sulfur metabolism and glucosinolate biosynthesis. Glucosinolates are a group of nitrogen- and sulfur-containing secondary metabolites, which largely exist in the Cruciferous vegetables. HPLC analysis of the contents and components of glucosinolates in four different stem development stages revealed eight glucosinolates, namely, three aliphatic glucosinolates (sinigrin, glucoalyssin and gluconapin), four indole glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrassicin) and one aromatic glucosinolate (gluconasturtiin). All these types of glucosinolates showed a significant downward trend during the stem swelling period. The content of aliphatic glucosinolates was the highest, with sinigrin being the main component. In addition, qPCR was used to validate the expression of nine genes involved in glucosinolate biosynthesis. Most of these genes were down-regulated during stem swelling in qPCR, which is consistent with transcriptome data. These data provide a basic resource for further molecular and genetic research on Brassica juncea.


2020 ◽  
Vol 19 (1) ◽  
pp. 85-95
Author(s):  
Ye Zhao ◽  
Yongqiang Zhang ◽  
Xianfeng Guo ◽  
Yan Ma ◽  
Peng Zhang ◽  
...  

Glucosinolates (GS) are a group of sulfur- and nitrogen-rich plant secondary metabolites that originate fromamino acids and exist mainly in plants in the order Brassicales, such as Arabidopsis thaliana (Arabidopsis) and Chinese cabbage (Brassica rapa ssp. pekinensis). To date, several regulatory components responsible for GS biosynthesis have been identified in Arabidopsis. However, the functions of GS biosynthesis regulators in Chinese cabbage have not been clarified. In our current study, a putative ATR1/MYB34 orthologous gene, BrMYB34.2, was isolated from Chinese cabbage leaves. To investigate the function of this gene, we engineered Arabidopsis plants that overexpress BrMYB34.2 ectopically and phenotypic analysis was performed. Moreover, we assayed the accumulation levels of indolic GS (IGS) and aliphatic glucosinolates in transgenic plants and test the expression of key genes of IGS biosynthesis and tryptophan synthesis by Real-time quantitative PCR. And further analysed the resistance of transgenic plants in 5MT stress treatment. The results indicate that ectopic expression of the BrMYB34.2 gene in Arabidopsis was able to up-regulate the accumulation level of IGS due to the increased expression of IGS and Trp biosynthetic genes. Moreover, overexpression of BrMYB34.2 conferred Arabidopsis 5MT resistance. These results suggest that the BrMYB34.2 gene may function as one of the regulators of IGS and Trp biosynthesis in Chinese cabbage.


Sign in / Sign up

Export Citation Format

Share Document