synaptic development
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 49)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Siwei Zhang ◽  
Hanwen Zhang ◽  
Marc Forrest ◽  
Yifan Zhou ◽  
Vikram A Bagchi ◽  
...  

Despite hundreds of risk loci from genome-wide association studies of neuropsychiatric disorders, causal variants/genes remain largely unknown. Here, in NEUROG2-induced human neurons, we identified 31 risk SNPs in 26 schizophrenia (SZ) risk loci that displayed allele-specific open chromatin (ASoC) and were likely to be functional. Editing the strongest ASoC SNP rs2027349 near vacuolar protein sorting 45 homolog (VPS45) altered the expression of VPS45, lncRNA AC244033.2, and a distal gene, C1orf54, in human neurons. Notably, the global gene expression changes in neurons were enriched for SZ risk and correlated with post-mortem brain gene expression signatures of neuropsychiatric disorders. Neurons carrying the risk allele exhibited increased dendritic complexity, synaptic puncta density, and hyperactivity, which were reversed by knocking-down distinct cis-regulated genes (VPS45, AC244033.2, or C1orf54), suggesting a phenotypic contribution from all three genes. Interestingly, transcriptomic analysis of knockdown cells suggested a non-additive effects of these genes. Our study reveals a compound effect of multiple genes at a single SZ locus on synaptic development and function, providing a mechanistic link between a non-coding SZ risk variant and disease-related cellular phenotypes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eunyoung Jeong ◽  
Yoojoong Kim ◽  
Jihong Jeong ◽  
Yunje Cho

AbstractGPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.


2021 ◽  
Author(s):  
Michelle Ninochka D'Souza ◽  
Sarayu Ramakrishna ◽  
Bindushree K Radhakrishna ◽  
Vishwaja Jhaveri ◽  
Sreenath Ravindran ◽  
...  

The Fragile X Mental Retardation Protein (FMRP) is an RNA Binding Protein that regulates translation of mRNAs, essential for synaptic development and plasticity. FMRP interacts with a specific set of mRNAs and aids in their microtubule dependent transport and regulates their translation through its association with ribosomes. However, the biochemical role of individual domains of FMRP in forming neuronal granules and associating with microtubules and ribosomes is currently undefined. Here, we report that the C-terminus domain of FMRP is sufficient to bind to ribosomes as well as polysomes akin to the full-length protein. Furthermore, the C-terminus domain alone is essential and responsible for FMRP-mediated translation repression in neurons. However, FMRP-mediated puncta formation and microtubule association is favored by the synergistic combination of FMRP domains and not by individual domains. Interestingly, we show that the phosphorylation of hFMRP at Serine-500 is important in modulating the dynamics of translation by controlling ribosome/polysome association. This is a fundamental mechanism governing the size and number of FMRP puncta, which appear to contain actively translating ribosomes. Finally through the use of pathogenic mutations, we emphasize the hierarchy of the domains of FMRP in their contribution to translation regulation.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xing Liu ◽  
Jun Ying ◽  
Xifeng Wang ◽  
Qingcui Zheng ◽  
Tiancheng Zhao ◽  
...  

Astrocytes are the major glial cells in the brain, which play a supporting role in the energy and nutritional supply of neurons. They were initially regarded as passive space-filling cells, but the latest progress in the study of the development and function of astrocytes highlights their active roles in regulating synaptic transmission, formation, and plasticity. In the concept of “tripartite synapse,” the bidirectional influence between astrocytes and neurons, in addition to their steady-state and supporting function, suggests that any negative changes in the structure or function of astrocytes will affect the activity of neurons, leading to neurodevelopmental disorders. The role of astrocytes in the pathophysiology of various neurological and psychiatric disorders caused by synaptic defects is increasingly appreciated. Understanding the roles of astrocytes in regulating synaptic development and the plasticity of neural circuits could help provide new treatments for these diseases.


2021 ◽  
Author(s):  
Chenghang Zhang ◽  
Colenso M Speer

Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. Axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. The synaptic basis of such refinement is unknown. Here we used volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. The outcome of binocular synaptic competition was determined by the relative eye-specific maturation of presynaptic vesicle content. Genetic disruption of spontaneous retinal activity prevented subsynaptic vesicle pool maturation, recruitment of vesicles to the active zone, synaptic development and eye-specific competition. These results reveal an activity-dependent presynaptic basis for axonal refinement in the mammalian visual system.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Isabella Farhy-Tselnicker ◽  
Matthew M Boisvert ◽  
Hanqing Liu ◽  
Cari Dowling ◽  
Galina A Erikson ◽  
...  

Astrocytes regulate the formation and function of neuronal synapses via multiple signals, however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually-evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development are also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, highlighting astrocytes as a target to manipulate in neurodevelopmental disorders.


Author(s):  
Jieqiong Wen ◽  
Jing Xu ◽  
R. Paige Mathena ◽  
Jun H. Choi ◽  
C. David Mintz

2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Alison T. DePew ◽  
Timothy J. Mosca

As the nervous system develops, connections between neurons must form to enable efficient communication. This complex process of synaptic development requires the coordination of a series of intricate mechanisms between partner neurons to ensure pre- and postsynaptic differentiation. Many of these mechanisms employ transsynaptic signaling via essential secreted factors and cell surface receptors to promote each step of synaptic development. One such cell surface receptor, LRP4, has emerged as a synaptic organizer, playing a critical role in conveying extracellular signals to initiate diverse intracellular events during development. To date, LRP4 is largely known for its role in development of the mammalian neuromuscular junction, where it functions as a receptor for the synaptogenic signal Agrin to regulate synapse development. Recently however, LRP4 has emerged as a synapse organizer in the brain, where new functions for the protein continue to arise, adding further complexity to its already versatile roles. Additional findings indicate that LRP4 plays a role in disorders of the nervous system, including myasthenia gravis, amyotrophic lateral sclerosis, and Alzheimer’s disease, demonstrating the need for further study to understand disease etiology. This review will highlight our current knowledge of how LRP4 functions in the nervous system, focusing on the diverse developmental roles and different modes this essential cell surface protein uses to ensure the formation of robust synaptic connections.


Sign in / Sign up

Export Citation Format

Share Document