competition for space
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 9 (12) ◽  
pp. 1431
Author(s):  
Aleksandr Zolotnitsky ◽  
Nataliy Sytnik ◽  
Sergei Chernyi ◽  
Natalya Logunova

The influence of the area of artificial substrates (collectors) on the biological parameters of populations of mussels (Mytilus galloprovincialis Lamarck) during their cultivation in the Black Sea has been investigated. For growing mollusks, four types of collectors were used, with different relative areas (ω), i.e., with different ratios of the substrate area (S) per unit length of the collector (L), which were 0.09, 0.21, 0.34, and 0.55. It was found that, during a 1.5-year cultivation, the density (N, ind./m) and biomass (B, kg/m) change and reach a certain stationary state, determined by the relative area of the substrate. It was shown that, on collectors with a higher value of ω, there was a decrease in the average length (L, mm) and weight (W, g) of the mollusk yield. The Boysen–Jensen method was used to calculate the total production of mollusks (P), elimination (E), and specific production (P/B coefficient) for each type of reservoir, and it was shown that P increased with an increase in the substrate area, while E and P/B coefficients decreased. Based on the analysis of the obtained results, it was concluded that during the cultivation of mussels these parameters are regulated by density-dependent population factors (intraspecific competition) for space (substrate) and food.


Significance The oil and gas giant cited the country’s 15% dividend tax on some types of shares as a key reason behind its decision, while in recent years the company has been subject to climate litigation in the courts. Impacts The government will be significantly more vigilant and protective of key industrial players such as semiconductor producer ASML. Farmers' protests are likely to increase amid worsening constraints over climate regulation and competition for space. Successful legal action over climate change in the Netherlands will encourage similar action in other countries.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaonan Liu ◽  
Miaoxiao Wang ◽  
Yong Nie ◽  
Xiao-Lei Wu

AbstractMany organisms live in habitats with limited nutrients or space, competition for these resources is ubiquitous. Although spatial factors related to the population’s manner of colonizing space influences its success in spatial competition, what these factors are and to what extent they influence the outcome remains underexplored. Here, we applied a simulated competitive model to explore the spatial factors affecting outcomes of competition for space. By quantifying spatial factors, we show that colonizing space in a more dispersed manner contributes to microbial competitive success. We also find that the competitive edge deriving from a more dispersed manner in colonization can compensate for the disadvantage arising from either a lower growth rate or lower initial abundance. These findings shed light on the role of space colonization manners on maintaining biodiversity within ecosystems and provide novel insights critical for understanding how competition for space drives evolutionary innovation.


2021 ◽  
Author(s):  
◽  
Laura Luise Barbara Woerner

<p>Intraspecific competition is of importance in the wild and captivity, as the interaction among individuals for resources can affect growth, survival, and ultimately fitness. Tuatara, Sphenodon punctatus, are endemic to New Zealand and the sole representatives of the reptile Order Rhynchocephalia, and their recovery plan outlines the importance of head-started individuals to supplement existing populations and provide stock to start new populations. Head-starting is a widespread conservation tool for raising juveniles in captivity prior to release in the wild, with the aim of reducing juvenile mortality and providing populations with more individuals. However, mortality differs between sexes and juvenile tuatara show enormous variation in size in captivity. I investigated aggression and competition for space and food in a tuatara head-starting facility to determine whether intraspecific competition may affect mortality and growth. Pairs of one-year-old tuatara, S. punctatus, were chosen according to sex and relative size, e.g. a big male and a small female or two similar sized females. Seven scenarios were replicated four times with different pairs. Behaviour (including two feeding trials) was recorded over a six day period via security cameras and direct observations. The number of aggressive conflicts differed among scenarios, and male-male dyads were significantly more aggressive than female-female dyads. Dominance hierarchies were established in 18 of 28 experimental pairs, with bigger animals being dominant. Conflicts include chasing, biting or colliding at full speed. One year old juveniles did not compete for space. They did not use space exclusively, but stopped clustering and had developed aggressive behaviour, suggesting that they are not territorial yet but in an early stage of transition towards territoriality as seen in older juveniles and adults. Space use and avoidance in space and time did not differ among social scenarios and the latter were negligible, but they marked a novel enclosure with urine and faeces. Juveniles competed directly and indirectly for food. Dominant individuals were likely to secure more food than submissive individuals. Females acquired less food when paired with males of bigger or similar size, and acquired about equal shares when paired with a smaller male. While bigger males acquired slightly more food when paired with smaller males, this was not the case in differently sized females. Interference behaviours such as chasing and food stealing were mostly directed from bigger towards smaller individuals. Captive group housing has consequences for competition and aggression, and may directly influence survival. As juvenile tuatara mortality is female-biased, and aggression against females in bigger male-biased groups common, I recommend keeping sexes separate, and assorting groups by size with more spacious enclosures for male groups. These modifications should improve health and numbers of juveniles for release, improve recruitment into the reproductive adult population, and ultimately create more successful head-starting facilities.</p>


2021 ◽  
Author(s):  
◽  
Laura Luise Barbara Woerner

<p>Intraspecific competition is of importance in the wild and captivity, as the interaction among individuals for resources can affect growth, survival, and ultimately fitness. Tuatara, Sphenodon punctatus, are endemic to New Zealand and the sole representatives of the reptile Order Rhynchocephalia, and their recovery plan outlines the importance of head-started individuals to supplement existing populations and provide stock to start new populations. Head-starting is a widespread conservation tool for raising juveniles in captivity prior to release in the wild, with the aim of reducing juvenile mortality and providing populations with more individuals. However, mortality differs between sexes and juvenile tuatara show enormous variation in size in captivity. I investigated aggression and competition for space and food in a tuatara head-starting facility to determine whether intraspecific competition may affect mortality and growth. Pairs of one-year-old tuatara, S. punctatus, were chosen according to sex and relative size, e.g. a big male and a small female or two similar sized females. Seven scenarios were replicated four times with different pairs. Behaviour (including two feeding trials) was recorded over a six day period via security cameras and direct observations. The number of aggressive conflicts differed among scenarios, and male-male dyads were significantly more aggressive than female-female dyads. Dominance hierarchies were established in 18 of 28 experimental pairs, with bigger animals being dominant. Conflicts include chasing, biting or colliding at full speed. One year old juveniles did not compete for space. They did not use space exclusively, but stopped clustering and had developed aggressive behaviour, suggesting that they are not territorial yet but in an early stage of transition towards territoriality as seen in older juveniles and adults. Space use and avoidance in space and time did not differ among social scenarios and the latter were negligible, but they marked a novel enclosure with urine and faeces. Juveniles competed directly and indirectly for food. Dominant individuals were likely to secure more food than submissive individuals. Females acquired less food when paired with males of bigger or similar size, and acquired about equal shares when paired with a smaller male. While bigger males acquired slightly more food when paired with smaller males, this was not the case in differently sized females. Interference behaviours such as chasing and food stealing were mostly directed from bigger towards smaller individuals. Captive group housing has consequences for competition and aggression, and may directly influence survival. As juvenile tuatara mortality is female-biased, and aggression against females in bigger male-biased groups common, I recommend keeping sexes separate, and assorting groups by size with more spacious enclosures for male groups. These modifications should improve health and numbers of juveniles for release, improve recruitment into the reproductive adult population, and ultimately create more successful head-starting facilities.</p>


2021 ◽  
Author(s):  
Xiaonan Liu ◽  
Miaoxiao Wang ◽  
Yong Nie ◽  
Xiao-Lei Wu

Many organisms live in habitats with limited nutrients or space, competition for these resources is ubiquitous. Although spatial factors related to population's manner of colonizing space influences its success in spatial competition, what these factors are and to what extent they influence the outcome remains under-explored. Here, we applied a simulated competitive model to explore the spatial factors affecting outcomes of competition for space. By quantifying spatial factors using 'Space Accessibility', we show that colonizing space in an anti-aggregation manner contributes to microbial competitive success. We also find that the competitive edge derived from being anti-aggregation in colonizing space, which results in a higher 'Space Accessibility', neutralizes the disadvantage arising from either lower growth rate or lower initial abundance. These findings shed light on the role of space colonization manners on maintaining biodiversity within ecosystems and provide novel insights critical for understanding how competition for space drives evolutionary innovation.


Author(s):  
Jorge Arroyo-Esquivel ◽  
Nathan G. Marculis ◽  
Alan Hastings

AbstractOne of the main factors that determines habitat suitability for sessile and territorial organisms is the presence or absence of another competing individual in that habitat. This type of competition arises in populations occupying patches in a metacommunity. Previous studies have looked at this process using a continuous-time modeling framework, where colonizations and extinctions occur simultaneously. However, different colonization processes may be performed by different species, which may affect the metacommunity dynamics. We address this issue by developing a discrete-time framework that describes these kinds of metacommunity interactions, and we consider different colonization dynamics. To understand potential dynamics, we consider specific functional forms that characterize the colonization and extinction processes of metapopulations competing for space as their limiting factor. We then provide a mathematical analysis of the models generated by this framework, and we compare these results to what is seen in nature and in previous models.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
David K. A. Barnes ◽  
Gail V. Ashton ◽  
Simon A. Morley ◽  
Lloyd S. Peck

AbstractEnvironmental conditions of the Southern Ocean around Antarctica have varied little for >5 million years but are now changing. Here, we investigated how warming affects competition for space. Little considered in the polar regions, this is a critical component of biodiversity response. Change in competition in response to environment forcing might be detectable earlier than individual species presence/absence or performance measures (e.g. growth). Examination of fauna on artificial substrata in Antarctica’s shallows at ambient or warmed temperature found that, mid-century predicted 1°C warming (throughout the year or just summer-only), increased the probability of individuals encountering spatial competition, as well as density and complexity of such interactions. 2°C, late century predicted warming, increased variance in the probability and density of competition, but overall, competition did not significantly differ from ambient (control) levels. In summary only 1°C warming increased probability, density and complexity of spatial competition, which seems to be summer-only driven.


Ethology ◽  
2020 ◽  
Vol 126 (11) ◽  
pp. 1031-1037
Author(s):  
Alejandro G. Farji‐Brener ◽  
Agostina S. Juncosa‐Polzella ◽  
Daniela Madrigal Tejada ◽  
Diego Centeno‐Alvarado ◽  
Mariana Hernández‐Soto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document