delayed alternation
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 2)

H-INDEX

38
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Antony D Abraham ◽  
Sanne M Casello ◽  
Selena S Schattauer ◽  
Brenden A Wong ◽  
Grace O Mizuno ◽  
...  

Following repeated opioid use, some dependent individuals experience persistent cognitive deficits that contribute to relapse of drug-taking behaviors, and one component of this response may be mediated by the endogenous dynorphin/kappa opioid system in neocortex. In mice, we find that acute morphine withdrawal evokes dynorphin release in the medial prefrontal cortex (PFC) and disrupts cognitive function by activation of local kappa opioid receptors (KORs). Immunohistochemical analyses using a phospho-KOR antibody confirmed that both withdrawal-induced and optically evoked dynorphin release activated KOR in PFC. Using a genetically encoded sensor based on inert KOR (kLight1.2a), we revealed the in vivo dynamics of endogenous dynorphin release in the PFC. Local activation of KOR in PFC produced multi-phasic disruptions of memory processing in an operant delayed alternation behavioral task, which manifest as reductions in response number and accuracy during early and late phases of an operant session. Local pretreatment in PFC with the selective KOR antagonist norbinaltorphimine (norBNI) blocked the disruptive effect of systemic KOR activation during both early and late phases of the session. The early, but not late phase disruption was blocked by viral excision of PFC KORs, suggesting an anatomically dissociable contribution of pre- and postsynaptic KORs. Naloxone-precipitated withdrawal in morphine-dependent mice or optical stimulation of pdynCre neurons using Channelrhodopsin-2 (ChR2) disrupted delayed alternation performance, and the dynorphin-induced effect was blocked by local norBNI. Our findings describe a mechanism for control of cortical function during opioid dependence and suggest that KOR antagonism could promote abstinence.


2013 ◽  
Vol 227 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Nancy S. Woehrle ◽  
Stephanie J. Klenotich ◽  
Naseem Jamnia ◽  
Emily V. Ho ◽  
Stephanie C. Dulawa

2012 ◽  
Vol 108 (12) ◽  
pp. 3276-3288 ◽  
Author(s):  
Nicole K. Horst ◽  
Mark Laubach

Neuronal spike activity was recorded in the medial prefrontal cortex (mPFC) as rats performed an operant spatial delayed alternation task. The sensitivities of neurons to choice, outcome, and temporal information-related aspects of the task were examined. About one-third of neurons were sensitive to the location of delayed responding while animals were at one of two spatially distinct response ports. However, many fewer neurons (<10%) maintained choice information over the delay, each exhibiting persistent differences in firing rates for only a portion of the delay. Another third of cells encoded information about behavioral outcomes, and some of these neurons (>20% of all cells) fired at distinct rates in advance of correct and incorrect responses (i.e., prospective encoding of outcome). Other cells were sensitive to reward-related feedback stimuli (>20%), the outcome of the preceding trial (retrospective encoding, 5–10%), and/or the time since a trial was last performed (10–20%). An anatomical analysis of the recording sites found that cells that were sensitive to choice, temporal, and outcome information were commingled within the middle layers of the mPFC. Together, our results suggest that spatial processing is only part of what drives mPFC neurons to become active during spatial working memory tasks. We propose that the primary role of mPFC in these tasks is to monitor behavioral performance by encoding information about recent trial outcomes to guide expectations and responses on the current trial. By encoding these variables, the mPFC is able to exert control over action and ensure that tasks are performed effectively and efficiently.


2012 ◽  
Vol 108 (4) ◽  
pp. 1211-1222 ◽  
Author(s):  
Mark A. Rossi ◽  
Volodya Y. Hayrapetyan ◽  
Benjamin Maimon ◽  
Krystal Mak ◽  
H. Shawn Je ◽  
...  

The prefrontal cortex (PFC) has been implicated in the maintenance of task-relevant information during goal-directed behavior. Using a combination of lesions, local inactivation, and optogenetics, we investigated the functional role of the medial prefrontal cortex (mPFC) in mice with a novel operant delayed alternation task. Task difficulty was manipulated by changing the duration of the delay between two sequential actions. In experiment 1, we showed that excitotoxic lesions of the mPFC impaired acquisition of delayed alternation with long delays (16 s), whereas lesions of the dorsal hippocampus and ventral striatum, areas connected with the PFC, did not produce any deficits. Lesions of dorsal hippocampus, however, significantly impaired reversal learning when the rule was changed from alternation to repetition. In experiment 2, we showed that local infusions of muscimol (an agonist of the GABAA receptor) into mPFC impaired performance even when the animal was well trained, suggesting that the mPFC is critical not only for acquisition but also for successful performance. In experiment 3, to examine the mechanisms underlying the role of GABAergic inhibition, we used Cre-inducible Channelrhodopsin-2 to activate parvalbumin (PV)-expressing GABAergic interneurons in the mPFC of PV-Cre transgenic mice as they performed the task. Using whole cell patch-clamp recording, we demonstrated that activation of PV-expressing interneurons in vitro with blue light in brain slices reliably produced spiking and inhibited nearby pyramidal projection neurons. With similar stimulation parameters, in vivo stimulation significantly impaired delayed alternation performance. Together these results demonstrate a critical role for the mPFC in the acquisition and performance of the delayed alternation task.


2012 ◽  
Vol 230 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Silvia Maioli ◽  
Giuseppe Gangarossa ◽  
Federica Locchi ◽  
Anna Andrioli ◽  
Giuseppe Bertini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document