In viscoelastic anisotropic media, the elastic moduli, slowness vector, phase, and ray velocity are all complex-valued quantities in the frequency domain. Solving the complex eikonal equation becomes computationally complex and time-consuming. We have developed two approximate methods to effectively calculate the ray velocity vector, attenuation, and quality factor in viscoelastic transversely isotropic media with a vertical symmetry axis (VTI) and in orthorhombic (ORT) anisotropy. The first method is based on the perturbation theory (PER) under the assumption of a homogeneous complex ray vector, which is obtained by applying the elastic background and viscoelastic perturbations to the real and imaginary components of the modulus tensor, respectively. The perturbations of the slowness vectors of the three wave modes (qP, qSV, and qSH) are determined through the vanishing Hamiltonian function. The second method is derived by applying a real slowness direction (RSD) to the inhomogeneous complex slowness vector and then approximately calculating the complex ray velocity vector with the condition of the homogeneous complex vector. The numerical results verify that the two approaches can produce accurate ray velocity vector, attenuation, and quality factors of the qP-wave in viscoelastic VTI and ORT media. The RSD method can yield high accuracies of ray velocity for the qSV- and qSH-wave in viscoelastic VTI models even at triplication of the qSV wavefronts, as well as qS1 and qS2 in a weak ORT medium ([Formula: see text] > 20), except for near the cusp of the qS1 wavefronts (errors approximately 6%) where the PER has more than 10% error.