double minute
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 55)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yang Mo ◽  
Qin Lu ◽  
Qi Zhang ◽  
Jie Chen ◽  
Youming Deng ◽  
...  

Introduction. Colorectal cancer (CRC), a common digestive tract tumor that contains colon and rectal cancer, is one of the three most common cancers globally. circRNAs are involved in the occurrence and development of CRC, but the mechanism of how they participate in this process remains unclear. Methods. We adopted PCR for expression measure, CCK-8 for cell proliferation detection, Transwell for cell migration and invasion detection, and dual-luciferase reporter assays to detect the potential downstream targets of CCDC66 in CRC. Results. This study showed that circRNA CCDC66 was overexpressed in CRC tissues, and after knockdown, it inhibited the proliferation, migration, and invasion of CRC cells (RKO and HCT-116) in vitro. In addition, the dual-luciferase reporter assay showed that there was a binding site between circCCDC66 and miR-370, as well as between miR-370 and murine double minute 4 (MDM4). That is, circCCDC66 upregulated the expression of MDM4 through competitively binding to miR-370. The expression of circCCDC66 in CRC tissues was positively correlated with MDM4 and negatively correlated with miR-370. Conclusion. In summary, our results indicate that circCCDC66 is a key upregulation of CRC. circCCDC66 upregulates MDM4 through competitive binding to miR-370, thereby enhancing the metastatic ability of CRC cells and promoting the development of CRC.


2021 ◽  
Vol 118 (44) ◽  
pp. e2102420118
Author(s):  
Alyssa M. Klein ◽  
Lynn Biderman ◽  
David Tong ◽  
Bita Alaghebandan ◽  
Sakina A. Plumber ◽  
...  

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2–Murine Double Minute X (MDM2–MDMX) heterodimer. The role of MDM2–MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.


2021 ◽  
Author(s):  
R. Gonzalo Parra ◽  
Moritz J Przybilla ◽  
Milena Simovic ◽  
Hana Susak ◽  
Manasi Ratnaparkhe ◽  
...  

Chromothripsis is a form of genome instability, whereby a presumably single catastrophic event generates extensive genomic rearrangements of one or few chromosome(s). However, little is known about the heterogeneity of chromothripsis across different clones from the same tumor, as well as changes in response to treatment. We analyzed single-cell genomic and transcriptomic alterations linked with chromothripsis in human p53-deficient medulloblastoma (n=7). We reconstructed the order of somatic events, identified early alterations likely linked to chromothripsis and depicted the contribution of chromothripsis to malignancy. We characterized subclonal variation of chromothripsis and its effects on double-minute chromosomes, cancer drivers and putatively druggable targets. Furthermore, we highlighted the causative role and the fitness consequences of specific rearrangements in neural progenitors.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Mafalda Timóteo ◽  
Ana Tavares ◽  
Sara Cruz ◽  
Carla Campos ◽  
Rui Medeiros ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Heyang Zhang ◽  
Xiaoxue Wang ◽  
Shibo Li ◽  
Xianfu Wang ◽  
Xianglan Lu ◽  
...  

Double minute chromosomes (dmins) are a form of gene amplification presenting as small spherical paired chromatin bodies. Dmins are rare in hematologic malignancies and are generally associated with a poor prognosis. Some case reports identified MYC or MLL gene amplification performing as dmin in myeloid neoplasms. FLT3 (FMS-related tyrosine kinase 3) acts as an oncogene in myeloid neoplasms which is associated with several signal transduction pathways. Genomic amplification of FLT3 has not been reported in hematological disease. The current study attempts to demonstrate the existence of double minute chromosomes via FLT3 gene amplification in a patient diagnosed with chronic myelomonocytic leukemia (CMML). Routine G-banded karyotype, array-based comparative genomic hybridization, and fluorescence in situ hybridization analyses were used to characterize the cytogenetic abnormality in the patient’s bone marrow. FLT3 amplification as dmins in a patient with CMML was revealed. This case study reports a rare double minute chromosome via FLT3 amplification in CMML by using array-based comparative genomic hybridization and fluorescence in situ hybridization analyses. The study also proposed another possible mechanism of FLT3 genes in leukemogenesis.


Sign in / Sign up

Export Citation Format

Share Document