metallic bond
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Xiangsha Du ◽  
Zhongyu Liu ◽  
Tatsuya Higaki ◽  
Meng Zhou ◽  
Rongchao Jin

The metallic bond is arguably the most intriguing one among the three types of chemical bonds, and the resultant plasmon excitation (e.g. in gold nanoparticles) has garnered wide interest. Recent...


2021 ◽  
Author(s):  
Yao Shu ◽  
Juan Wang ◽  
Yongnan Xiong ◽  
Xing Luo ◽  
Jiazhen He ◽  
...  

Abstract The charge communications have been widely existed in the metal materials when they are under the processing, the modeling and the failing. We studied the interfacial charge transformation of the TiB2/Cu composites via the first principles method. The layer thickness was predicted by the interfacial charge communications performed on the regions of the TiB2/Cu interfaces. The layer thickness of the Ti-terminated (TT)TiB2/Cu were predicted longer than those of the B-terminated(BT) TiB2/Cu and contrasting with their average vales as 0.75 (nm) and 0.65 (nm), respectively. The Mulliken population was applied to investigate the bond length, bond population and charge transformation of the six TiB2/Cu models. The Ti-Cu bond was only detected in TT-HCP interfaces among the all TT-TiB2/Cu models, which was further confirmed that the metallic bond of the Ti-Cu with the bond length and population as 2.5 Å and 0.22, respectively. Nevertheless, the B-Cu bond were detected in all BT-TiB2/Cu models, and the bond length and population higher than those of B-Cu bond in chemical complexes. The 5 atomic layers were involved in quantitative analyses of the interfacial charge transformation. The results indicate that the charges lost by interfacial Ti atom were inequivalent obtained by Cu and B atoms which nearby the interfacial Ti atoms of the TT-TiB2/Cu. Comparing with the BT-TiB2/Cu models, the charges acquired by the interfacial B atom were most from the Ti and less from the Cu atoms surrounded the interfacial B atoms.


2021 ◽  
Vol 11 (12) ◽  
pp. 2015-2023
Author(s):  
Zhaohui Han ◽  
Yang Xu ◽  
Lei Xu ◽  
Shenghui Guo

In this research, the diamond particles were coated with titanium by microwave heating method, then the Ti-coated diamond particles were used as raw material to fabricate the diamond/Al composites by microwave sintering. The result shows that the diamond particles could be covered with a uniform and continuous Ti coating under microwave irradiation, and the best Ti coating was obtained at 810 °C for 1 h. The metallic bond between diamond and Ti was formed to generate the intermediate transition layer of TiC. The diamond/Al composites which used Ti-coated diamond particles as raw material and were fabricated by microwave sintering show high relative density and hardness. The relative density and hardness of the diamond/Al composites increased with the temperature. While the composites were sintered at 710 °C for 1 h, the density could reach 2.855 g·cm−3, and relative density was 92.09%, which shows better microstructures and properties. There is Al3Ti alloy phase in Ti-coated diamond/Al composites, so the Ti-coated diamond can be well combined with the Al matrix, which can further improve the properties of the composites.


Author(s):  
Sansan Ao ◽  
Chunjie Li ◽  
Wei Zhang ◽  
João Pedro Oliveira ◽  
Zhi Zeng ◽  
...  

Abstract In the present work, the effects of laser surfacing aiming at modify the surface roughness on NiTi sheets prior to the application of ultrasonic welding (USW) were investigated. Three different configurations joining original and laser surfaced specimens were performed: original/original (referred as O/O), original/treated (referred as O/T); treated/treated (referred as T/T). The influence of surface roughness on the interface formation, diffusion, and mechanical behavior was investigated. It is observed that when both bonding surfaces becomes rougher (T/T configuration), the joint strength is the highest, followed by both smooth bonding surfaces (O/O configuration), and the strength of the joint is the lowest when only one of the bonding surfaces was roughened (O/T configuration), which is related to the degree of plastic deformation at the joining interface. The main joining mechanism of NiTi to the Al interlayer was a metallic bond caused by shear plastic deformation and formation and growth of micro welds at the joining interfaces. Laser surfacing facilitates the metallic bonding, which is directly reflected in the change of the thickness of the Al interlayer after USW. This also helps to produce mechanical interlocking at the interface, although there is no significant difference in the elemental diffusion. Interfacial failure occurred in all joints tested under different surface contact conditions and exhibited ductile-like fracture characteristics.


Author(s):  
A. V. Krokhalev ◽  
V. O. Kharlamov ◽  
D. R. Chernikov ◽  
E. A. Kosova ◽  
S. V. Kuzmin ◽  
...  

The results of investigations of the features of the behavior of the components of mixtures of refractory carbide powders with metals during explosive pressing are presented. It is shown that the main factor determining the compaction of mixtures is the dynamic flow of one of the phase components of the mixture into the initial pores of the powder. As the phase component of the mixture, the movement of which limits the degree of compaction and leads to the formation of a continuous matrix in the structure of the material pressed by the explosion, both the metal binder and the carbide component of the material can act.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 78
Author(s):  
Dan Luo ◽  
Yong Xiao ◽  
Liam Hardwick ◽  
Robert Snell ◽  
Matthew Way ◽  
...  

In the search for applications for alloys developed under the philosophy of the High Entropy Alloy (HEA)-type materials, the focus may be placed on applications where current alloys also use multiple components, albeit at lower levels than those found in HEAs. One such area, where alloys with complex compositions are already found, is in filler metals used for joining. In soldering (<450 °C) and brazing (>450 °C), filler metal alloys are taken above their liquidus temperature and used to form a metallic bond between two components, which remain both unmelted and largely unchanged throughout the process. These joining methods are widely used in applications from electronics to aerospace and energy, and filler metals are highly diverse, to allow compatibility with a broad range of base materials (including the capability to join ceramics to metals) and a large range of processing temperatures. Here, we review recent developments in filler metals relevant to High Entropy materials, and argue that such alloys merit further exploration to help overcome a number of current challenges that need to be solved for filler metal-based joining methods.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 796
Author(s):  
Fang Yu ◽  
Yu Liu

In this paper, an in-depth theoretical study on some physical properties of Ti0.5Ta0.5 alloy with systematic symmetry under high pressure is conducted via first-principles calculations, and relevant physical parameters are calculated. The results demonstrate that the calculated parameters, including lattice parameter, elastic constants, and elastic moduli, fit well with available theoretical and experimental data when the Ti0.5Ta0.5 alloy is under T = 0 and P = 0 , indicating that the theoretical analysis method can effectively predict the physical properties of the Ti0.5Ta0.5 alloy. The microstructure and macroscopic physical properties of the alloy cannot be destroyed as the applied pressure ranges from 0 to 50GPa, but the phase transition of crystal structure may occur in the Ti0.5Ta0.5 alloy if the applied pressure continues to increase according to the TDOS curves and charge density diagram. The value of Young’s and shear modulus is maximized at P = 25   GPa . The anisotropy factors A ( 100 ) [ 001 ] and A ( 110 ) [ 001 ] are equal to 1, suggesting the Ti0.5Ta0.5 alloy is an isotropic material at 28 GPa, and the metallic bond is strengthened under high pressure. The present results provide helpful insights into the physical properties of Ti0.5Ta0.5 alloy.


2019 ◽  
Vol 66 (5) ◽  
pp. 644-650
Author(s):  
Yasin Ozgurluk ◽  
Kadir Mert Doleker ◽  
Abdullah Cahit Karaoglanli

Purpose Thermal barrier coatings (TBCs), which are used in high temperature applications of gas turbines, are damaged due to fuels and airborne minerals under working conditions. Stable zirconia coatings, which are usually used as topcoat materials in TBCs, are damaged by interacting at high temperatures with elements such as vanadium and sulfur from low quality fuels. The purpose of this paper is to see the failure mechanism of TBC systems after hot corrosion damages. Design/methodology/approach CoNiCrAlY metallic bond coatings of TBC samples were produced by cold gas dynamic spray method which is a new trend production method and stabilized zirconia ceramic top coating was produced by atmospheric plasma spray method. In total, 50% by weight of V2O5 and 50% Na2SO4 salt mixtures were placed on TBC samples and subjected to hot corrosion test at 1000°C. Findings Hot corrosion behaviors of TBC samples were examined by scanning electron microscopy, elemental mapping analysis, energy dispersive X-ray spectrometry analysis and X-ray diffraction analysis. TBC samples were damaged at the end of 12-h cycles. Originality/value The paper provides to understand the mechanism of hot corrosion of TBCs with cold sprayed metallic bond coat.


Author(s):  
Yuntao Cui ◽  
Fei Liang ◽  
Shuo Xu ◽  
Yujie Ding ◽  
Zheshuai Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document