river flood
Recently Published Documents


TOTAL DOCUMENTS

807
(FIVE YEARS 195)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Günter Blöschl

Abstract. This article reviews river flood generation processes and flow paths across space scales. The scale steps include the pore, profile, hillslope, catchment, regional and continental scales, representing a scale range of a total of 10 orders of magnitude. Although the processes differ between the scales, there are notable similarities. At all scales, there are media patterns that control the flow of water, and are themselves influenced by the flow of water. The processes are therefore not spatially random (as in thermodynamics) but organised, and preferential flow is the rule rather than the exception. Hydrological connectivity, i.e. the presence of coherent flow paths, is an essential characteristic at all scales. There are similar controls on water flow and thus on flood generation at all scales, however, with different relative magnitudes. Processes at lower scales affect flood generation at the larger scales not simply as a multiple repetition of pore scale processes, but through interactions, which cause emergent behaviour of process patterns. For this reason, when modelling these processes, the scale transitions need to be simplified in a way that reflects the relevant structures (e.g. connectivity) and boundary conditions (e.g. groundwater table) at each scale. In conclusion, it is argued that upscaling as the mere multiple application of small scale process descriptions will not capture the larger scale patterns of flood generation. Instead, there is a need to learn from observed patterns of flood generation processes at all spatial scales.


2022 ◽  
Vol 92 (1) ◽  
pp. 1-11
Author(s):  
Catharina J. Heerema ◽  
Matthieu J.B. Cartigny ◽  
Ricardo Silva Jacinto ◽  
Stephen M. Simmons ◽  
Ronan Apprioual ◽  
...  

ABSTRACT Turbidity currents triggered at river mouths form an important highway for sediment, organic carbon, and nutrients to the deep sea. Consequently, it has been proposed that the deposits of these flood-triggered turbidity currents provide important long-term records of past river floods, continental erosion, and climate. Various depositional models have been suggested to identify river-flood-triggered turbidite deposits, which are largely based on the assumption that a characteristic velocity structure of the flood-triggered turbidity current is preserved as a recognizable vertical grain size trend in their deposits. Four criteria have been proposed for the velocity structure of flood-triggered turbidity currents: prolonged flow duration; a gradual increase in velocity; cyclicity of velocity magnitude; and a low peak velocity. However, very few direct observations of flood-triggered turbidity currents exist to test these proposed velocity structures. Here we present direct measurements from the Var Canyon, offshore Nice in the Mediterranean Sea. An acoustic Doppler current profiler was located 6 km offshore from the river mouth, and provided detailed velocity measurements that can be directly linked to the state of the river. Another mooring, positioned 16 km offshore, showed how this velocity structure evolved down-canyon. Three turbidity currents were measured at these moorings, two of which are associated with river floods. The third event was not linked to a river flood and was most likely triggered by a seabed slope failure. The multi-pulsed and prolonged velocity structure of all three (flood- and landslide-triggered) events is similar at the first mooring, suggesting that it may not be diagnostic of flood triggering. Indeed, the event that was most likely triggered by a slope failure matched the four flood-triggered criteria best, as it had prolonged duration, cyclicity, low velocity, and a gradual onset. Hence, previously assumed velocity-structure criteria used to identify flood-triggered turbidity currents may be produced by other triggers. Next, this study shows how the proximal multi-pulsed velocity structure reorganizes down-canyon to produce a single velocity pulse. Such rapid-onset, single-pulse velocity structure has previously been linked to landslide-triggered events. Flows recorded in this study show amalgamation of multiple velocity pulses leading to shredding of the flood signal, so that the original initiation mechanism is no longer discernible at just 16 km from the river mouth. Recognizing flood-triggered turbidity currents and their deposits may thus be challenging, as similar velocity structures can be formed by different triggers, and this proximal velocity structure can rapidly be lost due to self-organization of the turbidity current.


2022 ◽  
Vol 951 (1) ◽  
pp. 012111
Author(s):  
H Basri ◽  
S Syakur ◽  
A Azmeri ◽  
E Fatimah

Abstract The phenomenon of flooding that occurs in almost all regions of the earth causes loss of property and damage to public facilities and causes the loss of many human lives. There are many reports related to the causes of flooding with various solutions offered to overcome the flood problem. However, it seems that these efforts have not been able to eliminate the flood problem. Hydrologists have widely reported various factors that are the cause of flooding with an extensive scope. Therefore, this paper is limited to discussing flooding and its problems, specifically the river flood, from the perspective of land use and soil types. Changes in land use in a watershed can cause an increase in the runoff coefficient. Likewise, different types of soil have different abilities in passing water into the ground. Open land (without land cover) tends to be prone to erosion, reducing the soil’s infiltration capacity and increased surface runoff. Increasing the runoff coefficient will increase the peak discharge in a watershed. The decrease in the river capacity due to sediment can cause a river flood. To support this argument, a rainfall-runoff model, particularly the tank model, is also discussed, taking into account the various uses and types of soil in a watershed. Efforts to anticipate the river flood are also considered for formulating flood disaster control policies in a watershed.


2022 ◽  
Vol 805 ◽  
pp. 150123
Author(s):  
Robin Treilles ◽  
Johnny Gasperi ◽  
Romain Tramoy ◽  
Rachid Dris ◽  
Anaïs Gallard ◽  
...  
Keyword(s):  

2022 ◽  
Vol 955 (1) ◽  
pp. 012011
Author(s):  
A W Biantoro ◽  
S I Wahyudi ◽  
M F Niam ◽  
A G Mahardika

Abstract This research is based on flood conditions that often occur in lowland areas such as Jakarta and Semarang. The problem faced is that the notification and early detection of floods is often late, done manually so that it cannot be anticipated by areas downstream of the river. Therefore, it is very important to be able to develop an IoT-based early warning tool so that floods can be detected early in a fast, real time, and immediately anticipated in the upstream area of the river. This research method uses design methods and experiments carried out in the field and laboratory. This research will present a prototype of the FEDS (Floods Early Detection System), based on the Blynk application. The results showed that the calculation of planned flood discharge with a return period of 2, 5, 10, 25 and 50 years can provide an overview of the ability of an area to face the maximum possible rainfall. The FEDS prototype tool, with the Blynk application, can work well using a microcontroller, ultra sonic sensor, and a rainfall sensor. This system is suitable for use in the community to determine rain conditions and water level conditions used at river water level conditions, for early notification of floods.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Zixiong Wang ◽  
Ya Sun ◽  
Chunhui Li ◽  
Ling Jin ◽  
Xinguo Sun ◽  
...  

Exceeding control standard floods pose threats to the management of small and medium–scale rivers. Taking Fuzhouhe river as an example, this paper analyzes the submerged depth, submerged area and arrival time of river flood risk in the case of exceeding control standard floods (with return period of 20, 50, 100 and 200 years) through a coupled one– and two–dimensional hydrodynamic model, draws the flood risk maps and proposes emergency plans. The simulation results of the one–dimensional model reveal that the dikes would be at risk of overflowing for different frequencies of floods, with a higher level of risk on the left bank. The results of the coupled model demonstrate that under all scenarios, the inundation area gradually increases with time until the flood peak subsides, and the larger the flood peak, the faster the inundation area increases. The maximum submerged areas are 42.73 km2, 65.95 km2, 74.86 km2 and 82.71 km2 for four frequencies of flood, respectively. The change of submerged depth under different frequency floods shows a downward–upward–downward trend and the average submerged depth of each frequency floods is about 1.4 m. The flood risk maps of different flood frequencies are created by GIS to analyze flood arrival time, submerged area and submerged depth to plan escape routes and resettlement units. The migration distances are limited within 4 km, the average migration distance is about 2 km, the vehicle evacuation time is less than 20 min, and the walking evacuation time is set to about 70 min. It is concluded that the flood risk of small and medium–scale rivers is a dynamic change process, and dynamic flood assessment, flood warning and embankment modification scheme should be further explored.


Sign in / Sign up

Export Citation Format

Share Document